在Google Cloud Run上部署IBM MCP Context Forge网关的完整指南
2025-06-10 07:39:01作者:尤辰城Agatha
前言
IBM MCP Context Forge是一个功能强大的上下文管理平台,本文将详细介绍如何在Google Cloud Run上部署其网关组件。Google Cloud Run作为完全托管的无服务器平台,能够为容器化应用提供自动扩缩容能力,是部署MCP Gateway的理想选择。
技术架构概述
在Google Cloud Run上部署MCP Gateway涉及以下核心组件:
- Cloud Run:运行MCP Gateway容器的主平台
- Cloud SQL:托管PostgreSQL数据库服务
- Memorystore:托管Redis缓存服务
- Artifact Registry:容器镜像仓库
这种架构组合提供了完整的后端支持,同时保持了无服务器架构的弹性和成本优势。
环境准备
1. 安装Google Cloud CLI
Google Cloud CLI是与Google Cloud服务交互的主要工具。以下是各平台的安装方法:
macOS系统
brew install --cask google-cloud-sdk
Debian/Ubuntu系统
sudo apt-get update
sudo apt-get install -y apt-transport-https ca-certificates gnupg curl
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo gpg --dearmor -o /usr/share/keyrings/cloud.google.gpg
echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" | sudo tee -a /etc/apt/sources.list.d/google-cloud-sdk.list
sudo apt-get update
sudo apt-get install -y google-cloud-cli
Windows系统
winget install --id Google.CloudSDK
初始化并认证:
gcloud init
gcloud auth login
gcloud config set project PROJECT_ID
2. 启用必要API
gcloud services enable \
run.googleapis.com \
sqladmin.googleapis.com \
redis.googleapis.com
基础设施部署
1. 创建PostgreSQL数据库实例
使用经济型的db-f1-micro规格:
gcloud sql instances create mcpgw-db \
--database-version=POSTGRES_17 \
--edition=ENTERPRISE \
--tier=db-f1-micro \
--region=us-central1
设置数据库密码并创建数据库:
gcloud sql users set-password postgres \
--instance=mcpgw-db \
--password=mysecretpassword
gcloud sql databases create mcpgw --instance=mcpgw-db
2. 创建Redis实例
使用基础版1GB内存配置:
gcloud redis instances create mcpgw-redis \
--region=us-central1 \
--tier=BASIC \
--size=1
容器镜像准备
由于Cloud Run需要镜像存储在Artifact Registry中,我们需要创建远程仓库代理:
export PROJECT_ID="your-project-id"
gcloud artifacts repositories create ghcr-remote \
--project=$PROJECT_ID \
--repository-format=docker \
--location=us-central1 \
--description="Proxy for GitHub Container Registry" \
--mode=remote-repository \
--remote-docker-repo=https://ghcr.io
部署MCP Gateway
1. 获取数据库连接信息
# 获取PostgreSQL连接名称
gcloud sql instances describe mcpgw-db \
--format="value(connectionName)"
# 获取PostgreSQL IP地址
gcloud sql instances describe mcpgw-db \
--format="value(ipAddresses.ipAddress)"
# 获取Redis IP地址
gcloud redis instances describe mcpgw-redis \
--region=us-central1 \
--format="value(host)"
2. 部署服务
gcloud run deploy mcpgateway \
--image=us-central1-docker.pkg.dev/$PROJECT_ID/ghcr-remote/ibm/mcp-context-forge:latest
--region=us-central1 \
--platform=managed \
--allow-unauthenticated \
--port=4444 \
--cpu=1 \
--memory=512i \
--max-instances=1 \
--set-env-vars=\
JWT_SECRET_KEY=jwt-secret-key,\
BASIC_AUTH_USER=admin,\
BASIC_AUTH_PASSWORD=changeme,\
AUTH_REQUIRED=true,\
DATABASE_URL=postgresql://postgres:mysecretpassword@<SQL_IP>:5432/mcpgw,\
REDIS_URL=redis://<REDIS_IP>:6379/0,\
CACHE_TYPE=redis,\
HOST=0.0.0.0,\
GUNICORN_WORKERS=1
关键参数说明:
--cpu=1
和--memory=512i
:限制资源使用以控制成本--max-instances=1
:限制最大实例数GUNICORN_WORKERS=1
:控制内存使用
验证部署
1. 检查数据库表结构
psql postgresql://postgres:mysecretpassword@<SQL_IP>:5432/mcpgw -c "\dt"
应看到18个表,包括gateways、mcp_messages、prompts等。
2. 生成JWT令牌
docker run -it --rm ghcr.io/ibm/mcp-context-forge:latest \
python3 -m mcpgateway.utils.create_jwt_token -u admin --secret jwt-secret-key
3. 测试API端点
# 健康检查
curl -H "Authorization: Bearer $MCPGATEWAY_BEARER_TOKEN" \
https://<your-cloud-run-url>/health
# 版本检查
curl -H "Authorization: Bearer $MCPGATEWAY_BEARER_TOKEN" \
https://<your-cloud-run-url>/version
# 工具列表
curl -H "Authorization: Bearer $MCPGATEWAY_BEARER_TOKEN" \
https://<your-cloud-run-url>/tools
日志监控
实时日志查看
gcloud beta run services logs tail mcpgateway --region=us-central1
最佳实践建议
-
安全加固:
- 使用Secret Manager管理敏感信息
- 限制数据库访问IP范围
- 定期轮换JWT密钥
-
性能优化:
- 根据负载调整GUNICORN_WORKERS数量
- 设置min-instances减少冷启动延迟
-
成本控制:
- 使用Cloud Run的自动扩缩容特性
- 监控资源使用情况调整配额
-
高可用性:
- 考虑多区域部署关键组件
- 设置适当的健康检查
常见问题排查
-
容器启动失败:
- 检查HOST是否设置为0.0.0.0
- 验证端口配置是否正确
-
数据库连接问题:
- 确认IP白名单设置
- 检查连接字符串格式
-
认证失败:
- 验证JWT密钥一致性
- 检查Basic Auth凭据
通过本文的详细指南,您应该能够在Google Cloud Run上成功部署IBM MCP Context Forge网关,并构建一个高效、可扩展的上下文管理平台。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401