在树莓派上使用YOLOv5实现实时目标检测与图像保存
2025-04-30 04:34:21作者:乔或婵
引言
YOLOv5作为当前流行的目标检测算法,因其轻量级和高效性特别适合在边缘设备如树莓派上部署。本文将详细介绍如何在树莓派4B+上使用YOLOv5实现实时摄像头目标检测,并将检测到的图像自动保存到本地文件夹中。
环境准备
在树莓派上运行YOLOv5需要确保以下环境配置:
- Python 3.8或更高版本
- PyTorch框架(ARM架构适配版本)
- OpenCV库
- YOLOv5源代码
建议使用虚拟环境来管理项目依赖,避免与系统Python环境冲突。
核心代码实现
以下是经过优化的YOLOv5实时检测与图像保存实现代码:
import torch
from PIL import Image
import cv2
import datetime
import os
# 模型加载配置
MODEL_PATH = '/path/to/yolov5s.pt'
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH)
# 创建保存目录
SAVE_DIR = 'detection_results'
os.makedirs(SAVE_DIR, exist_ok=True)
# 初始化摄像头
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
ret, frame = cap.read()
if not ret:
break
# 转换图像格式
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_pil = Image.fromarray(img_rgb)
# 执行推理
results = model(img_pil)
# 检测到目标时保存图像
if len(results.pred[0]) > 0:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{SAVE_DIR}/detection_{timestamp}.jpg"
cv2.imwrite(filename, frame)
print(f"检测到目标,已保存: {filename}")
# 显示实时画面(可选)
cv2.imshow('YOLOv5 Detection', frame)
if cv2.waitKey(1) == 27: # ESC键退出
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
关键技术点解析
-
模型加载优化:
- 使用torch.hub.load()方法加载本地模型
- 指定source='local'参数避免重复下载
- 对于树莓派建议使用yolov5n或yolov5s等轻量级模型
-
图像处理流程:
- OpenCV读取的BGR格式转换为RGB格式
- PIL.Image格式转换以适应YOLOv5输入要求
- 时间戳命名确保文件唯一性
-
性能优化技巧:
- 设置合适的摄像头分辨率(640x480)
- 使用os.makedirs创建保存目录
- 添加ESC键退出功能提升用户体验
常见问题解决方案
-
模型加载失败:
- 检查模型文件路径是否正确
- 确认PyTorch版本与模型兼容
- 树莓派上建议使用PyTorch 1.8+版本
-
检测性能低下:
- 降低输入图像分辨率
- 改用更小的模型(yolov5n)
- 增加树莓派散热措施
-
图像保存问题:
- 检查目录写入权限
- 确保存储空间充足
- 验证时间戳生成逻辑
进阶应用方向
-
多线程处理:
- 将图像采集和推理过程分离到不同线程
- 使用队列实现线程间通信
-
结果可视化:
- 在保存的图像上绘制检测框和置信度
- 添加FPS显示监控性能
-
云端集成:
- 将检测结果上传至云存储
- 实现远程监控功能
结语
在树莓派上部署YOLOv5进行实时目标检测是一个极具实用价值的项目,既能够学习深度学习算法,又能掌握边缘计算设备的应用技巧。本文提供的方案经过实际验证,在树莓派4B+上能够稳定运行,读者可以根据实际需求进行进一步的功能扩展和性能优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74

React Native鸿蒙化仓库
C++
175
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K