在树莓派上使用YOLOv5实现实时目标检测与图像保存
2025-04-30 11:34:47作者:乔或婵
引言
YOLOv5作为当前流行的目标检测算法,因其轻量级和高效性特别适合在边缘设备如树莓派上部署。本文将详细介绍如何在树莓派4B+上使用YOLOv5实现实时摄像头目标检测,并将检测到的图像自动保存到本地文件夹中。
环境准备
在树莓派上运行YOLOv5需要确保以下环境配置:
- Python 3.8或更高版本
- PyTorch框架(ARM架构适配版本)
- OpenCV库
- YOLOv5源代码
建议使用虚拟环境来管理项目依赖,避免与系统Python环境冲突。
核心代码实现
以下是经过优化的YOLOv5实时检测与图像保存实现代码:
import torch
from PIL import Image
import cv2
import datetime
import os
# 模型加载配置
MODEL_PATH = '/path/to/yolov5s.pt'
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH)
# 创建保存目录
SAVE_DIR = 'detection_results'
os.makedirs(SAVE_DIR, exist_ok=True)
# 初始化摄像头
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
ret, frame = cap.read()
if not ret:
break
# 转换图像格式
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_pil = Image.fromarray(img_rgb)
# 执行推理
results = model(img_pil)
# 检测到目标时保存图像
if len(results.pred[0]) > 0:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{SAVE_DIR}/detection_{timestamp}.jpg"
cv2.imwrite(filename, frame)
print(f"检测到目标,已保存: {filename}")
# 显示实时画面(可选)
cv2.imshow('YOLOv5 Detection', frame)
if cv2.waitKey(1) == 27: # ESC键退出
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
关键技术点解析
-
模型加载优化:
- 使用torch.hub.load()方法加载本地模型
- 指定source='local'参数避免重复下载
- 对于树莓派建议使用yolov5n或yolov5s等轻量级模型
-
图像处理流程:
- OpenCV读取的BGR格式转换为RGB格式
- PIL.Image格式转换以适应YOLOv5输入要求
- 时间戳命名确保文件唯一性
-
性能优化技巧:
- 设置合适的摄像头分辨率(640x480)
- 使用os.makedirs创建保存目录
- 添加ESC键退出功能提升用户体验
常见问题解决方案
-
模型加载失败:
- 检查模型文件路径是否正确
- 确认PyTorch版本与模型兼容
- 树莓派上建议使用PyTorch 1.8+版本
-
检测性能低下:
- 降低输入图像分辨率
- 改用更小的模型(yolov5n)
- 增加树莓派散热措施
-
图像保存问题:
- 检查目录写入权限
- 确保存储空间充足
- 验证时间戳生成逻辑
进阶应用方向
-
多线程处理:
- 将图像采集和推理过程分离到不同线程
- 使用队列实现线程间通信
-
结果可视化:
- 在保存的图像上绘制检测框和置信度
- 添加FPS显示监控性能
-
云端集成:
- 将检测结果上传至云存储
- 实现远程监控功能
结语
在树莓派上部署YOLOv5进行实时目标检测是一个极具实用价值的项目,既能够学习深度学习算法,又能掌握边缘计算设备的应用技巧。本文提供的方案经过实际验证,在树莓派4B+上能够稳定运行,读者可以根据实际需求进行进一步的功能扩展和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896