在树莓派上使用YOLOv5实现实时目标检测与图像保存
2025-04-30 14:01:52作者:乔或婵
引言
YOLOv5作为当前流行的目标检测算法,因其轻量级和高效性特别适合在边缘设备如树莓派上部署。本文将详细介绍如何在树莓派4B+上使用YOLOv5实现实时摄像头目标检测,并将检测到的图像自动保存到本地文件夹中。
环境准备
在树莓派上运行YOLOv5需要确保以下环境配置:
- Python 3.8或更高版本
- PyTorch框架(ARM架构适配版本)
- OpenCV库
- YOLOv5源代码
建议使用虚拟环境来管理项目依赖,避免与系统Python环境冲突。
核心代码实现
以下是经过优化的YOLOv5实时检测与图像保存实现代码:
import torch
from PIL import Image
import cv2
import datetime
import os
# 模型加载配置
MODEL_PATH = '/path/to/yolov5s.pt'
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH)
# 创建保存目录
SAVE_DIR = 'detection_results'
os.makedirs(SAVE_DIR, exist_ok=True)
# 初始化摄像头
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
ret, frame = cap.read()
if not ret:
break
# 转换图像格式
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_pil = Image.fromarray(img_rgb)
# 执行推理
results = model(img_pil)
# 检测到目标时保存图像
if len(results.pred[0]) > 0:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{SAVE_DIR}/detection_{timestamp}.jpg"
cv2.imwrite(filename, frame)
print(f"检测到目标,已保存: {filename}")
# 显示实时画面(可选)
cv2.imshow('YOLOv5 Detection', frame)
if cv2.waitKey(1) == 27: # ESC键退出
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
关键技术点解析
-
模型加载优化:
- 使用torch.hub.load()方法加载本地模型
- 指定source='local'参数避免重复下载
- 对于树莓派建议使用yolov5n或yolov5s等轻量级模型
-
图像处理流程:
- OpenCV读取的BGR格式转换为RGB格式
- PIL.Image格式转换以适应YOLOv5输入要求
- 时间戳命名确保文件唯一性
-
性能优化技巧:
- 设置合适的摄像头分辨率(640x480)
- 使用os.makedirs创建保存目录
- 添加ESC键退出功能提升用户体验
常见问题解决方案
-
模型加载失败:
- 检查模型文件路径是否正确
- 确认PyTorch版本与模型兼容
- 树莓派上建议使用PyTorch 1.8+版本
-
检测性能低下:
- 降低输入图像分辨率
- 改用更小的模型(yolov5n)
- 增加树莓派散热措施
-
图像保存问题:
- 检查目录写入权限
- 确保存储空间充足
- 验证时间戳生成逻辑
进阶应用方向
-
多线程处理:
- 将图像采集和推理过程分离到不同线程
- 使用队列实现线程间通信
-
结果可视化:
- 在保存的图像上绘制检测框和置信度
- 添加FPS显示监控性能
-
云端集成:
- 将检测结果上传至云存储
- 实现远程监控功能
结语
在树莓派上部署YOLOv5进行实时目标检测是一个极具实用价值的项目,既能够学习深度学习算法,又能掌握边缘计算设备的应用技巧。本文提供的方案经过实际验证,在树莓派4B+上能够稳定运行,读者可以根据实际需求进行进一步的功能扩展和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
【免费下载】 JDK 8 和 JDK 17 无缝切换及 IDEA 和 【maven下载安装与配置】 DirectX修复工具【亲测免费】 让经典焕发新生:使用 Visual Studio Code 作为 Visual C++ 6.0 编辑器【亲测免费】 抖音直播助手:douyin-live-go 项目推荐【亲测免费】 ActivityManager 使用指南【亲测免费】 使用Docker-Compose部署达梦DEM管理工具(适用于Mac M1系列)【免费下载】 Windows Keepalived:Windows系统上的高可用性解决方案 Matlab物理建模仿真利器——Simscape及其编程语言Simscape Language学习资源推荐【亲测免费】 Windows10安装Hadoop 3.1.3详细教程【亲测免费】 开源项目 gkd-kit/gkd 常见问题解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20