Agent-Service-toolkit中Gemini模型流式输出问题的解决方案
在开发基于Langchain的AI应用时,流式输出(streaming)是一个非常重要的功能特性,它能够显著提升用户体验。本文将以agent-service-toolkit项目为例,深入分析在使用Gemini模型时遇到的流式输出问题及其解决方案。
问题背景
在agent-service-toolkit项目中,开发者发现当使用OpenAI模型时,token级别的流式输出工作正常,但在切换到Gemini模型(运行在VertexAI上)后,流式输出功能失效,只能获取到模型的最终输出结果。具体表现为TokenQueueStreamingHandler中的_on_llm_new_token()回调方法从未被触发。
技术分析
经过深入排查,发现问题根源在于Langchain不同版本和不同模型提供商对流式处理的支持方式存在差异。在Langchain 0.2.15版本中,使用.astream()方法处理Gemini模型时无法正确触发token级别的回调。
解决方案
项目贡献者提出了一种基于事件流的解决方案,将原来的.astream()方法替换为.astream_events()方法。这一改变带来了以下优势:
- 统一处理不同模型提供商的流式输出
- 通过事件机制更精细地控制输出流程
- 同时兼容OpenAI和Gemini模型
具体实现中,需要监听三种关键事件:
on_chain_end:用于链式调用结束时的状态更新ChannelWrite:用于消息写入通道on_chat_model_stream:专门处理聊天模型的token流
实现细节
在修改后的实现中,消息生成器(message_generator)不再直接处理原始流,而是通过事件系统来获取和处理数据。这种方式虽然使用了仍在Beta阶段的事件流API,但提供了更好的兼容性和扩展性。
技术展望
这一解决方案不仅解决了当前Gemini模型的流式输出问题,还为未来集成更多模型提供商奠定了基础。随着Langchain事件流API的成熟,这种基于事件的流处理方式可能会成为标准实践。
总结
在AI应用开发中,处理不同模型提供商的兼容性问题是一个常见挑战。agent-service-toolkit项目通过采用事件流机制,优雅地解决了Gemini模型的流式输出问题,这一经验值得其他开发者借鉴。未来可以考虑将这一解决方案扩展到更多模型提供商,并随着Langchain API的演进持续优化实现方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00