Agent-Service-toolkit中Gemini模型流式输出问题的解决方案
在开发基于Langchain的AI应用时,流式输出(streaming)是一个非常重要的功能特性,它能够显著提升用户体验。本文将以agent-service-toolkit项目为例,深入分析在使用Gemini模型时遇到的流式输出问题及其解决方案。
问题背景
在agent-service-toolkit项目中,开发者发现当使用OpenAI模型时,token级别的流式输出工作正常,但在切换到Gemini模型(运行在VertexAI上)后,流式输出功能失效,只能获取到模型的最终输出结果。具体表现为TokenQueueStreamingHandler
中的_on_llm_new_token()
回调方法从未被触发。
技术分析
经过深入排查,发现问题根源在于Langchain不同版本和不同模型提供商对流式处理的支持方式存在差异。在Langchain 0.2.15版本中,使用.astream()
方法处理Gemini模型时无法正确触发token级别的回调。
解决方案
项目贡献者提出了一种基于事件流的解决方案,将原来的.astream()
方法替换为.astream_events()
方法。这一改变带来了以下优势:
- 统一处理不同模型提供商的流式输出
- 通过事件机制更精细地控制输出流程
- 同时兼容OpenAI和Gemini模型
具体实现中,需要监听三种关键事件:
on_chain_end
:用于链式调用结束时的状态更新ChannelWrite
:用于消息写入通道on_chat_model_stream
:专门处理聊天模型的token流
实现细节
在修改后的实现中,消息生成器(message_generator)不再直接处理原始流,而是通过事件系统来获取和处理数据。这种方式虽然使用了仍在Beta阶段的事件流API,但提供了更好的兼容性和扩展性。
技术展望
这一解决方案不仅解决了当前Gemini模型的流式输出问题,还为未来集成更多模型提供商奠定了基础。随着Langchain事件流API的成熟,这种基于事件的流处理方式可能会成为标准实践。
总结
在AI应用开发中,处理不同模型提供商的兼容性问题是一个常见挑战。agent-service-toolkit项目通过采用事件流机制,优雅地解决了Gemini模型的流式输出问题,这一经验值得其他开发者借鉴。未来可以考虑将这一解决方案扩展到更多模型提供商,并随着Langchain API的演进持续优化实现方式。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









