Agent-Service-toolkit中Gemini模型流式输出问题的解决方案
在开发基于Langchain的AI应用时,流式输出(streaming)是一个非常重要的功能特性,它能够显著提升用户体验。本文将以agent-service-toolkit项目为例,深入分析在使用Gemini模型时遇到的流式输出问题及其解决方案。
问题背景
在agent-service-toolkit项目中,开发者发现当使用OpenAI模型时,token级别的流式输出工作正常,但在切换到Gemini模型(运行在VertexAI上)后,流式输出功能失效,只能获取到模型的最终输出结果。具体表现为TokenQueueStreamingHandler中的_on_llm_new_token()回调方法从未被触发。
技术分析
经过深入排查,发现问题根源在于Langchain不同版本和不同模型提供商对流式处理的支持方式存在差异。在Langchain 0.2.15版本中,使用.astream()方法处理Gemini模型时无法正确触发token级别的回调。
解决方案
项目贡献者提出了一种基于事件流的解决方案,将原来的.astream()方法替换为.astream_events()方法。这一改变带来了以下优势:
- 统一处理不同模型提供商的流式输出
- 通过事件机制更精细地控制输出流程
- 同时兼容OpenAI和Gemini模型
具体实现中,需要监听三种关键事件:
on_chain_end:用于链式调用结束时的状态更新ChannelWrite:用于消息写入通道on_chat_model_stream:专门处理聊天模型的token流
实现细节
在修改后的实现中,消息生成器(message_generator)不再直接处理原始流,而是通过事件系统来获取和处理数据。这种方式虽然使用了仍在Beta阶段的事件流API,但提供了更好的兼容性和扩展性。
技术展望
这一解决方案不仅解决了当前Gemini模型的流式输出问题,还为未来集成更多模型提供商奠定了基础。随着Langchain事件流API的成熟,这种基于事件的流处理方式可能会成为标准实践。
总结
在AI应用开发中,处理不同模型提供商的兼容性问题是一个常见挑战。agent-service-toolkit项目通过采用事件流机制,优雅地解决了Gemini模型的流式输出问题,这一经验值得其他开发者借鉴。未来可以考虑将这一解决方案扩展到更多模型提供商,并随着Langchain API的演进持续优化实现方式。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00