Fooocus项目在纯CPU环境下的性能优化实践
2025-05-02 10:15:10作者:农烁颖Land
前言
随着Stable Diffusion生态的快速发展,各类基于该技术的开源项目层出不穷。本文将重点探讨Fooocus这一优秀项目在纯CPU环境下的性能优化方案,为没有独立显卡但拥有高性能CPU的用户提供实践指导。
性能对比分析
在近两个月的测试中,我们对市场上主流的Stable Diffusion实现进行了全面评估:
- Stable Diffusion Webui:渲染1024x1024图像需要约8分钟(20步),虚拟内存占用极高
- Automatic1111:基于Webui的分支版本,存在相同问题
- Invoke AI:渲染时间缩短至2分钟,内存管理较好但用户体验欠佳
- Fooocus:经过优化后性能显著提升,成为纯CPU环境下的最佳选择
Fooocus优化方案
线程配置优化
在model-management.py文件中进行以下修改,强制使用16线程(可根据实际CPU核心数调整):
if args.always_cpu:
# 强制使用16线程
torch.set_num_threads(16)
cpu_state = CPUState.CPU
系统级内存管理配置
通过以下环境变量配置优化内存管理:
export MALLOCC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
export OMP_PROC_BIND=CLOSE
export OMP_SCHEDULE=STATIC
export KMP_AFFINITY=granularity=fine,compact,1,0
export OMP_NUM_THREAD=16
export GOMP_CPU_AFFINITY="0-15"
export ONEDNN_PRIMITIVE_CACHE_CAPACITY=200
启动参数优化
推荐使用以下命令启动Fooocus:
numactl --all accelerate launch --num_cpu_threads_per_process=16 launch.py --always-cpu --all-in-fp32 --disable-xformers --attention-pytorch --disable-server-log
性能表现
经过上述优化后,Fooocus在不同模型下的表现:
- Juggernaut模型:1024x1024图像20步约2分钟
- LCM模型:1024x1024图像8步不到1分钟
- TurboVision模型:1024x1024图像8步约1分20秒
模型管理建议
- 精简模型数量:默认安装的Juggernaut+1个Lora+基础模型约占用14GB内存
- 避免模型堆积:即使不使用的模型也会被加载到内存
- 使用符号链接:可灵活共享模型而不增加内存负担
# 创建符号链接
ln -s ~/Fooocus/models/saved/Turbo*.* ~/Fooocus/models/checkpoints
# 移除符号链接
rm -rf ~/Fooocus/models/checkpoints/Turbo*.*
总结
Fooocus项目经过适当优化后,在纯CPU环境下展现出卓越的性能表现。通过合理的线程配置、内存管理和模型维护,即使是仅有高性能CPU的用户也能获得令人满意的AI图像生成体验。建议用户根据自身硬件条件调整参数,并保持模型库的精简高效。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869