Fooocus项目在纯CPU环境下的性能优化实践
2025-05-02 06:22:23作者:农烁颖Land
前言
随着Stable Diffusion生态的快速发展,各类基于该技术的开源项目层出不穷。本文将重点探讨Fooocus这一优秀项目在纯CPU环境下的性能优化方案,为没有独立显卡但拥有高性能CPU的用户提供实践指导。
性能对比分析
在近两个月的测试中,我们对市场上主流的Stable Diffusion实现进行了全面评估:
- Stable Diffusion Webui:渲染1024x1024图像需要约8分钟(20步),虚拟内存占用极高
- Automatic1111:基于Webui的分支版本,存在相同问题
- Invoke AI:渲染时间缩短至2分钟,内存管理较好但用户体验欠佳
- Fooocus:经过优化后性能显著提升,成为纯CPU环境下的最佳选择
Fooocus优化方案
线程配置优化
在model-management.py文件中进行以下修改,强制使用16线程(可根据实际CPU核心数调整):
if args.always_cpu:
# 强制使用16线程
torch.set_num_threads(16)
cpu_state = CPUState.CPU
系统级内存管理配置
通过以下环境变量配置优化内存管理:
export MALLOCC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
export OMP_PROC_BIND=CLOSE
export OMP_SCHEDULE=STATIC
export KMP_AFFINITY=granularity=fine,compact,1,0
export OMP_NUM_THREAD=16
export GOMP_CPU_AFFINITY="0-15"
export ONEDNN_PRIMITIVE_CACHE_CAPACITY=200
启动参数优化
推荐使用以下命令启动Fooocus:
numactl --all accelerate launch --num_cpu_threads_per_process=16 launch.py --always-cpu --all-in-fp32 --disable-xformers --attention-pytorch --disable-server-log
性能表现
经过上述优化后,Fooocus在不同模型下的表现:
- Juggernaut模型:1024x1024图像20步约2分钟
- LCM模型:1024x1024图像8步不到1分钟
- TurboVision模型:1024x1024图像8步约1分20秒
模型管理建议
- 精简模型数量:默认安装的Juggernaut+1个Lora+基础模型约占用14GB内存
- 避免模型堆积:即使不使用的模型也会被加载到内存
- 使用符号链接:可灵活共享模型而不增加内存负担
# 创建符号链接
ln -s ~/Fooocus/models/saved/Turbo*.* ~/Fooocus/models/checkpoints
# 移除符号链接
rm -rf ~/Fooocus/models/checkpoints/Turbo*.*
总结
Fooocus项目经过适当优化后,在纯CPU环境下展现出卓越的性能表现。通过合理的线程配置、内存管理和模型维护,即使是仅有高性能CPU的用户也能获得令人满意的AI图像生成体验。建议用户根据自身硬件条件调整参数,并保持模型库的精简高效。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
最新内容推荐
【亲测免费】 IMAPClient 项目常见问题解决方案 fMRIPrep 项目常见问题解决方案【免费下载】 Xposed-Disable-FLAG_SECURE 项目常见问题解决方案React与其他库集成:React From Zero中的简单与高级集成技巧【免费下载】 释放Nvme固态硬盘的全部潜能:Nvme通用驱动推荐 pyDOE 项目常见问题解决方案【亲测免费】 Wux Weapp 微信小程序 UI 组件库推荐 Almond 项目常见问题解决方案 【亲测免费】TaskBoard项目排坑指南:从安装到高级功能的10大痛点解决方案【亲测免费】 Arduino库:PZEM-004T v3.0 功率和能量计
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
515
3.7 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
546
Ascend Extension for PyTorch
Python
317
362
暂无简介
Dart
759
182
React Native鸿蒙化仓库
JavaScript
299
347
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
734
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
128