Shell Operator 使用教程
1. 目录结构及介绍
Shell Operator 是一个用于在 Kubernetes 集群中运行事件驱动脚本的工具。其仓库的目录结构展示如下关键部分:
-
cmd/shell-operator: 这是主要的程序执行入口点,包含了用于启动 Shell Operator 的命令行代码。
-
docs: 文档目录,可能存放有关如何使用 Shell Operator 的指导性文档。
-
examples: 示例目录,提供了应用 Shell Operator 的示例配置和脚本来帮助新手快速上手。
-
frameworks/shell: 包含了特定于 Shell 操作的支持框架或辅助函数。
-
pkg: 这个目录含有项目的内部包,封装了解析配置、处理事件逻辑等功能模块。
-
scripts/ci: 可能是持续集成相关的脚本,用于自动化测试或部署流程。
-
tests: 测试相关代码,确保 Shell Operator 的功能完整性和稳定性。
-
dockerignore, gitignore: 分别定义了构建 Docker 镜像时忽略的文件和 Git 提交时忽略的文件类型。
-
Dockerfile: 定义了构建 Shell Operator 镜像的过程。
-
LICENSE, README.md: 许可证文件和项目的主要说明文档,包含了项目简介、安装方法和快速入门指南。
2. 项目的启动文件介绍
虽然具体的启动文件路径取决于项目结构的变化,但通常位于 cmd/shell-operator/main.go。这个文件是 Shell Operator 应用的主入口点,负责初始化程序,设置日志记录,加载配置,并启动事件监听循环。开发者或运维人员通过编译此Go源码或直接使用提供的Docker镜像来启动服务。
3. 项目的配置文件介绍
Shell Operator 的配置文件并未直接在上述引用内容中详细列出,但基于此类开源项目的常见做法,配置通常可以通过YAML文件指定。配置文件一般应包括以下几个关键部分:
-
kubeConfig: 指定Kubernetes集群的连接配置,允许Shell Operator连接到正确的集群。
-
hooks: 此部分定义了事件触发的钩子(hooks),包括对象(如Pods, ConfigMaps等)的添加、更新、删除等操作对应的Shell脚本路径。
-
objectSelectors: 允许设置筛选规则,以决定哪些Kubernetes对象上的事件会被Shell Operator捕获和响应。
-
scheduler: 可能包含定时任务的设置,定义何时运行特定的脚本。
为了实际应用,配置文件的一个简化的例子可能如下所示(请注意,这仅是示例结构):
apiVersion: shelloperator.flant.com/v1
kind: Hook
metadata:
name: simple-hook
spec:
schedule: "*/5 * * * *" # 周期性任务示例
command: "/path/to/your/script.sh"
resources:
kinds:
- Pod
- Service
onEvent:
add: true # 当对象被创建时执行
update: true # 当对象被更新时执行
delete: false # 不在对象被删除时执行
实际配置将会更复杂并根据不同需求定制,需参考官方文档获取确切的配置模板和说明。记得查看官方GitHub页面或其文档以获取最新和详细的配置说明。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00