ChatGLM3项目中huggingface_hub版本依赖问题分析与解决方案
问题背景
在部署和使用ChatGLM3项目时,许多开发者遇到了一个典型的Python依赖冲突问题。具体表现为在运行composite_demo时出现ModuleNotFoundError: No module named 'huggingface_hub.inference._text_generation'
错误。这个问题源于huggingface生态系统中不同组件之间的版本兼容性问题。
问题分析
该错误的核心在于huggingface_hub库的版本更新导致API接口发生了变化。在较新版本中,huggingface_hub.inference._text_generation
模块已被重构或移除,而项目代码中仍引用了该模块中的TextGenerationStreamResponse
和Token
类。
进一步分析发现,这个问题还涉及到transformers库与huggingface_hub库之间的版本依赖关系。transformers 4.41.0要求huggingface-hub>=0.23.0,而项目代码却需要huggingface-hub<0.22.0才能正常运行。
解决方案
经过社区验证,以下版本组合可以稳定运行ChatGLM3项目:
-
推荐版本组合:
- transformers==4.40.0
- huggingface-hub==0.20.2
-
备选解决方案:
- 安装特定版本的huggingface_hub:
pip install "huggingface_hub<0.22.0"
- 同时安装chardet库以解决可能的编码问题:
pip install chardet
- 安装特定版本的huggingface_hub:
-
加速库版本: 对于使用accelerate库的情况,建议使用:
pip install accelerate==0.31.0
技术建议
-
版本隔离:建议使用虚拟环境(venv或conda)来管理项目依赖,避免全局Python环境中的版本冲突。
-
依赖锁定:对于生产环境,建议使用requirements.txt或Pipfile.lock精确锁定所有依赖版本。
-
持续关注更新:ChatGLM3项目团队已注意到此问题并着手修改依赖关系,建议定期关注项目更新。
总结
依赖管理是Python项目开发中的常见挑战,特别是在机器学习领域,各组件更新频繁。ChatGLM3项目中遇到的这个问题很好地展示了如何通过版本降级来解决依赖冲突。开发者应理解这不是代码本身的问题,而是生态系统中不同组件演进速度不一致导致的暂时性兼容问题。
随着ChatGLM3项目的持续更新,这个问题有望在后续版本中得到根本解决。在此之前,采用上述版本组合是可靠的临时解决方案。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









