Higress AI 缓存插件与 TextIn 向量服务对接实践
2025-06-09 22:26:57作者:廉彬冶Miranda
背景介绍
在现代 AI 应用架构中,向量检索和缓存是提升大模型应用性能的关键组件。Higress 作为阿里巴巴开源的云原生网关,其 AI 插件生态提供了与各类 AI 服务的深度集成能力。本文将详细介绍如何将 Higress 的 AI 缓存插件与 TextIn 向量服务进行对接,并分享在实践过程中遇到的技术问题与解决方案。
核心组件解析
1. Higress AI 插件架构
Higress 的 AI 插件体系主要包含两大核心组件:
- AI Proxy 插件:负责与各类大模型 API 的对接和协议转换
- AI Cache 插件:提供向量检索和缓存能力,支持多种向量数据库和嵌入模型
2. TextIn 向量服务
TextIn 提供的高质量文本嵌入服务,能够将文本转换为高维向量表示。其特点包括:
- 支持 1792 维的 Matryoshka 降维技术
- 提供稳定高效的 API 接口
- 适用于语义搜索、推荐系统等场景
配置实践详解
1. 基础环境搭建
通过 Docker Compose 部署 Higress 网关环境时,需要特别注意:
services:
envoy:
image: higress-registry.cn-hangzhou.cr.aliyuncs.com/higress/gateway:v2.0.2
command: -c /etc/envoy/envoy.yaml --component-log_level wasm:debug
volumes:
- ./envoy.yaml:/etc/envoy/envoy.yaml
- ./ai-cache.wasm:/etc/envoy/main.wasm
- ./ai-proxy.wasm:/etc/envoy/ai.wasm
2. 关键配置说明
在 envoy.yaml 配置中,需要重点关注以下部分:
http_filters:
- name: cache
typed_config:
value:
config:
configuration:
value: |
{
"embedding": {
"type": "textin",
"serviceName": "textin.dns",
"textinAppId": "your_app_id",
"textinSecretCode": "your_secret",
"textinMatryoshkaDim": 1792
},
"vector": {
"type": "dashvector",
"serviceName": "dashvector.dns",
"collectionID": "your_collection",
"apiKey": "your_api_key"
}
}
3. 集群配置要点
每个外部服务都需要配置对应的集群:
clusters:
- name: textin.dns
type: STRICT_DNS
load_assignment:
endpoints:
- lb_endpoints:
- endpoint:
address:
socket_address:
address: api.textin.com
port_value: 443
transport_socket:
name: envoy.transport_sockets.tls
typed_config:
"@type": type.googleapis.com/envoy.extensions.transport_sockets.tls.v3.UpstreamTlsContext
"sni": "api.textin.com"
常见问题排查
1. 请求卡顿问题
在实践中发现请求长时间无响应,主要原因是:
- TinyGo 编译时缺少必要的 WASM 标签
- 解决方案:确保编译时包含 "proxy_wasm_version_0_2_100" 标签
2. 请求处理流程异常
当请求没有 body 时,插件可能无法正常处理:
- 需要正确处理 HeaderStopIteration 和 ActionContinue
- 应根据请求是否有 body 动态决定处理方式
3. 服务发现配置
关键注意事项:
- 每个服务必须配置对应的 DNS 集群
- 服务名称(serviceName)必须与集群名称严格匹配
- 需要正确配置 TLS 上下文和 SNI 信息
性能优化建议
- 合理设置超时时间:对于 AI 服务建议设置为 300s
- 启用调试日志:初期调试时可开启 wasm:debug 级别日志
- 缓存策略优化:根据业务特点选择合适的缓存类型和过期时间
- 批量处理:对于高频请求可考虑实现批量向量查询
总结
Higress 的 AI 插件体系为构建高效的大模型应用提供了强大支持。通过与 TextIn 等专业向量服务的深度集成,开发者可以快速构建具备语义理解能力的智能应用。在实践中需要注意 WASM 编译环境、请求处理逻辑和服务发现等关键配置点,这些经验对于其他 AI 服务的集成也具有参考价值。
未来,随着 Higress 生态的不断完善,AI 插件将会支持更多类型的向量服务和优化策略,为云原生 AI 应用提供更强大的基础设施支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328