Higress AI 缓存插件与 TextIn 向量服务对接实践
2025-06-09 00:28:33作者:廉彬冶Miranda
背景介绍
在现代 AI 应用架构中,向量检索和缓存是提升大模型应用性能的关键组件。Higress 作为阿里巴巴开源的云原生网关,其 AI 插件生态提供了与各类 AI 服务的深度集成能力。本文将详细介绍如何将 Higress 的 AI 缓存插件与 TextIn 向量服务进行对接,并分享在实践过程中遇到的技术问题与解决方案。
核心组件解析
1. Higress AI 插件架构
Higress 的 AI 插件体系主要包含两大核心组件:
- AI Proxy 插件:负责与各类大模型 API 的对接和协议转换
- AI Cache 插件:提供向量检索和缓存能力,支持多种向量数据库和嵌入模型
2. TextIn 向量服务
TextIn 提供的高质量文本嵌入服务,能够将文本转换为高维向量表示。其特点包括:
- 支持 1792 维的 Matryoshka 降维技术
- 提供稳定高效的 API 接口
- 适用于语义搜索、推荐系统等场景
配置实践详解
1. 基础环境搭建
通过 Docker Compose 部署 Higress 网关环境时,需要特别注意:
services:
envoy:
image: higress-registry.cn-hangzhou.cr.aliyuncs.com/higress/gateway:v2.0.2
command: -c /etc/envoy/envoy.yaml --component-log_level wasm:debug
volumes:
- ./envoy.yaml:/etc/envoy/envoy.yaml
- ./ai-cache.wasm:/etc/envoy/main.wasm
- ./ai-proxy.wasm:/etc/envoy/ai.wasm
2. 关键配置说明
在 envoy.yaml 配置中,需要重点关注以下部分:
http_filters:
- name: cache
typed_config:
value:
config:
configuration:
value: |
{
"embedding": {
"type": "textin",
"serviceName": "textin.dns",
"textinAppId": "your_app_id",
"textinSecretCode": "your_secret",
"textinMatryoshkaDim": 1792
},
"vector": {
"type": "dashvector",
"serviceName": "dashvector.dns",
"collectionID": "your_collection",
"apiKey": "your_api_key"
}
}
3. 集群配置要点
每个外部服务都需要配置对应的集群:
clusters:
- name: textin.dns
type: STRICT_DNS
load_assignment:
endpoints:
- lb_endpoints:
- endpoint:
address:
socket_address:
address: api.textin.com
port_value: 443
transport_socket:
name: envoy.transport_sockets.tls
typed_config:
"@type": type.googleapis.com/envoy.extensions.transport_sockets.tls.v3.UpstreamTlsContext
"sni": "api.textin.com"
常见问题排查
1. 请求卡顿问题
在实践中发现请求长时间无响应,主要原因是:
- TinyGo 编译时缺少必要的 WASM 标签
- 解决方案:确保编译时包含 "proxy_wasm_version_0_2_100" 标签
2. 请求处理流程异常
当请求没有 body 时,插件可能无法正常处理:
- 需要正确处理 HeaderStopIteration 和 ActionContinue
- 应根据请求是否有 body 动态决定处理方式
3. 服务发现配置
关键注意事项:
- 每个服务必须配置对应的 DNS 集群
- 服务名称(serviceName)必须与集群名称严格匹配
- 需要正确配置 TLS 上下文和 SNI 信息
性能优化建议
- 合理设置超时时间:对于 AI 服务建议设置为 300s
- 启用调试日志:初期调试时可开启 wasm:debug 级别日志
- 缓存策略优化:根据业务特点选择合适的缓存类型和过期时间
- 批量处理:对于高频请求可考虑实现批量向量查询
总结
Higress 的 AI 插件体系为构建高效的大模型应用提供了强大支持。通过与 TextIn 等专业向量服务的深度集成,开发者可以快速构建具备语义理解能力的智能应用。在实践中需要注意 WASM 编译环境、请求处理逻辑和服务发现等关键配置点,这些经验对于其他 AI 服务的集成也具有参考价值。
未来,随着 Higress 生态的不断完善,AI 插件将会支持更多类型的向量服务和优化策略,为云原生 AI 应用提供更强大的基础设施支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895