使用angr监控内存读取操作的技术解析
2025-05-28 10:11:30作者:袁立春Spencer
在二进制分析领域,angr作为一个强大的符号执行框架,提供了丰富的功能来分析和理解程序行为。本文将重点介绍如何使用angr来监控程序执行过程中的内存读取操作,这对于分析程序的数据访问模式、检测潜在问题或比较不同执行路径下的内存访问行为具有重要意义。
内存读取监控的基本原理
在程序执行过程中,内存读取操作(如x86架构下的MOV指令从内存加载数据)是常见且关键的操作。这些操作通常涉及两个要素:要读取的内存地址和读取的数据内容。在符号执行环境下,这两个要素都可能包含具体值或符号表达式。
angr框架通过SimInspect机制提供了对这类操作的监控能力。SimInspect允许用户在模拟执行过程中设置检查点(inspection points),当特定类型的事件发生时触发回调函数,从而实现对执行过程的细粒度监控。
实现内存读取监控的技术细节
要在angr中监控内存读取操作,主要需要以下几个步骤:
-
定义回调函数:创建一个处理函数,该函数将在每次内存读取时被调用。这个函数可以接收当前状态、内存地址表达式、读取大小等信息。
-
设置检查点:在SimulationManager运行前,为内存读取事件('memory_read')注册回调函数。
-
执行和分析:运行符号执行,收集并处理回调函数提供的信息。
实际应用示例
假设我们需要比较两个不同执行路径下特定位置的内存读取行为,可以这样实现:
def mem_read_callback(state):
# 获取当前读取的内存地址
addr_expr = state.inspect.mem_read_address
# 获取读取的长度
length = state.inspect.mem_read_length
# 对地址表达式进行分析
if state.solver.symbolic(addr_expr):
# 处理符号地址情况
possible_addrs = state.solver.eval_upto(addr_expr, 10)
else:
# 处理具体地址情况
concrete_addr = state.solver.eval(addr_expr)
# 记录或比较逻辑...
# 创建项目
proj = angr.Project('target_binary')
# 设置初始状态
state = proj.factory.entry_state()
# 注册内存读取回调
state.inspect.b('memory_read', when=angr.BP_BEFORE, action=mem_read_callback)
# 创建SimulationManager并运行
simgr = proj.factory.simulation_manager(state)
simgr.run()
高级应用场景
这种技术可以应用于多种高级分析场景:
- 数据流分析:追踪特定数据在程序中的传播路径
- 问题检测:识别可能越界的内存访问操作
- 行为比对:比较不同版本或变体程序的相似性
- 逆向工程:辅助理解复杂的数据结构访问模式
注意事项
在使用这项技术时,需要注意以下几点:
- 性能考虑:频繁的回调可能显著降低符号执行速度
- 符号表达式处理:需要妥善处理可能出现的复杂符号表达式
- 状态管理:确保回调操作不会意外修改程序状态
- 路径爆炸:在复杂程序中要注意控制路径数量
通过合理利用angr的内存读取监控功能,研究人员可以深入理解程序的内部行为,为安全分析和程序理解提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178