Crux项目中Arc循环引用导致的内存泄漏问题分析
2025-07-06 18:12:52作者:盛欣凯Ernestine
问题背景
在异步编程中,任务调度和内存管理是核心挑战。Crux项目作为一个Rust实现的异步运行时,在处理任务调度时遇到了一个典型的内存泄漏问题。这个问题源于Arc<Task>的循环引用,导致任务无法被正确释放。
问题重现
问题的重现步骤非常清晰:
- 创建一个
Arc<()>作为引用计数器 - 克隆该计数器并将其放入一个包含
ShellRequest.await调用的Future中 - 生成并执行该Future,Future会在
await处挂起而不会运行完成 - 显式释放执行器和生成器,期望Future也会被释放,引用计数应降回1
- 实际测试失败,引用计数仍为2
技术分析
循环引用的形成机制
在Crux的任务调度系统中,循环引用的形成经历了以下几个关键步骤:
- 任务创建:在
spawner::Spawn中创建Arc<Task>并通过通道发送给QueueingExecutor - 任务执行:在
QueuingExecutor::run_all中接收Arc<Task>并调用waker_ref获取唤醒器 - Future轮询:轮询Future时进入
ShellRequest的Future实现 - 唤醒器克隆:在
ShellRequest::Poll中克隆唤醒器(间接克隆Arc<Task>)并存储在ShellRequest.waker中
这样就形成了Arc<Task> -> Waker -> ShellRequest -> Arc<Task>的循环引用链。
内存泄漏的原因
当原始Arc<Task>在run_all结束时被丢弃时:
- 理想情况下引用计数应从1降为0,触发析构
- 但由于循环引用,计数仅从2降为1,无法触发析构
- 导致Future无法被正确释放
解决方案思路
短期解决方案
- 手动打破循环:在任务完成时显式清除
ShellRequest中的唤醒器引用 - 弱引用使用:将
ShellRequest中的唤醒器存储改为Weak引用
长期架构改进
- 生命周期管理:重新设计任务和唤醒器之间的所有权关系
- 资源清理机制:为执行器添加显式的资源清理阶段
- 静态分析工具:引入循环引用检测工具作为开发流程的一部分
经验总结
这个案例展示了异步编程中几个关键点:
- 唤醒器生命周期:在Rust异步生态中,唤醒器的生命周期管理需要特别关注
- 循环引用风险:
Arc的使用虽然方便,但在复杂场景下容易形成隐蔽的循环引用 - 测试验证:引用计数验证是检测此类问题的有效手段
最佳实践建议
- 最小化
Arc使用:只在确实需要共享所有权时使用Arc - 弱引用优先:在可能形成循环的场景优先考虑
Weak引用 - 资源清理验证:为关键资源添加引用计数断言测试
- 文档记录:明确记录各组件间的所有权关系
这个问题虽然特定于Crux项目,但其背后的循环引用模式和解决方案具有普遍意义,值得所有Rust异步开发者借鉴。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
256
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92