pytest-cpp 开源项目最佳实践教程
2025-04-29 13:33:19作者:昌雅子Ethen
1. 项目介绍
pytest-cpp 是一个开源项目,它是针对 C++ 语言的测试框架 pytest 的扩展。pytest 是一个成熟的全功能Python测试框架,而 pytest-cpp 则使得可以用 pytest 的语法和功能来测试 C++ 代码。pytest-cpp 提供了一种简洁且强大的方式来编写和运行 C++ 测试。
2. 项目快速启动
首先,确保您的系统中已经安装了 pytest 和 C++ 编译器。以下是快速启动 pytest-cpp 的步骤:
# 克隆项目
git clone https://github.com/pytest-dev/pytest-cpp.git
# 进入项目目录
cd pytest-cpp
# 编译 C++ 测试文件
# 假设您的测试文件名为 test.cpp
g++ -std=c++11 test.cpp -o test
# 使用 pytest 运行测试
pytest test.cpp
确保在运行 pytest 命令时,您的测试函数遵循 pytest 的命名约定(以 test_ 开头)。
3. 应用案例和最佳实践
编写测试
在 C++ 中编写测试,你应该创建一个测试函数,如下所示:
#include "gtest/gtest.h"
TEST(MyLibrary, Basics) {
// 测试代码
EXPECT_TRUE(true); // 一个简单的断言示例
}
在 pytest-cpp 中,你可以这样编写:
#include "gtest/gtest.h"
#include "pytest.hpp"
PYTEST差不齐(测试函数名) {
// 测试代码
PYTEST断言(true); // pytest 风格的断言
}
使用 fixture
在 pytest 中,fixture 是一个强大的功能,用于设置测试环境:
PYTEST.fixture(scope="module")
def setup_module():
# 在所有测试之前执行一次的代码
setup_code()
PYTEST fixture(scope="function")
def setup_function():
# 在每个测试之前执行的代码
setup_code()
# 使用 fixture 的测试函数
PYTEST不齐(测试函数名, setup=setup_function)
def test_with_fixture():
# 使用 fixture 设置的测试
...
参数化测试
pytest-cpp 支持参数化测试,使你可以使用不同的输入重复运行同一个测试:
PYTEST.mark.parametrize("input,expected", [(1, 1), (2, 4)])
def test_increment(input, expected):
assert input * 2 == expected
4. 典型生态项目
pytest-cpp 与 pytest 生态系统的其他项目兼容,可以无缝集成以下工具:
- pytest-cov:用于测试覆盖率报告。
- pytest-xdist:用于并行测试执行。
- pytest-mock:用于模拟对象和函数。
以上是 pytest-cpp 的最佳实践和快速启动指南。遵循这些实践,你将能够更高效地进行 C++ 代码测试。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210