pytest-cpp 开源项目最佳实践教程
2025-04-29 21:13:44作者:昌雅子Ethen
1. 项目介绍
pytest-cpp 是一个开源项目,它是针对 C++ 语言的测试框架 pytest 的扩展。pytest 是一个成熟的全功能Python测试框架,而 pytest-cpp 则使得可以用 pytest 的语法和功能来测试 C++ 代码。pytest-cpp 提供了一种简洁且强大的方式来编写和运行 C++ 测试。
2. 项目快速启动
首先,确保您的系统中已经安装了 pytest 和 C++ 编译器。以下是快速启动 pytest-cpp 的步骤:
# 克隆项目
git clone https://github.com/pytest-dev/pytest-cpp.git
# 进入项目目录
cd pytest-cpp
# 编译 C++ 测试文件
# 假设您的测试文件名为 test.cpp
g++ -std=c++11 test.cpp -o test
# 使用 pytest 运行测试
pytest test.cpp
确保在运行 pytest 命令时,您的测试函数遵循 pytest 的命名约定(以 test_ 开头)。
3. 应用案例和最佳实践
编写测试
在 C++ 中编写测试,你应该创建一个测试函数,如下所示:
#include "gtest/gtest.h"
TEST(MyLibrary, Basics) {
// 测试代码
EXPECT_TRUE(true); // 一个简单的断言示例
}
在 pytest-cpp 中,你可以这样编写:
#include "gtest/gtest.h"
#include "pytest.hpp"
PYTEST差不齐(测试函数名) {
// 测试代码
PYTEST断言(true); // pytest 风格的断言
}
使用 fixture
在 pytest 中,fixture 是一个强大的功能,用于设置测试环境:
PYTEST.fixture(scope="module")
def setup_module():
# 在所有测试之前执行一次的代码
setup_code()
PYTEST fixture(scope="function")
def setup_function():
# 在每个测试之前执行的代码
setup_code()
# 使用 fixture 的测试函数
PYTEST不齐(测试函数名, setup=setup_function)
def test_with_fixture():
# 使用 fixture 设置的测试
...
参数化测试
pytest-cpp 支持参数化测试,使你可以使用不同的输入重复运行同一个测试:
PYTEST.mark.parametrize("input,expected", [(1, 1), (2, 4)])
def test_increment(input, expected):
assert input * 2 == expected
4. 典型生态项目
pytest-cpp 与 pytest 生态系统的其他项目兼容,可以无缝集成以下工具:
- pytest-cov:用于测试覆盖率报告。
- pytest-xdist:用于并行测试执行。
- pytest-mock:用于模拟对象和函数。
以上是 pytest-cpp 的最佳实践和快速启动指南。遵循这些实践,你将能够更高效地进行 C++ 代码测试。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219