PointNet++的源码运行指南
2026-01-21 05:21:27作者:丁柯新Fawn
欢迎来到PointNet++源码运行教程!本资源旨在帮助您顺利下载并运行PointNet++的源代码,让您能够快速入手这个强大的点云处理框架。PointNet++是基于PointNet的深化研究,它改进了局部特征处理,提高了模型在3D点云数据上的性能。下面,我们将分步骤引导您完成从获取代码到训练模型的过程。
步骤 1:获取源码及数据集
源码下载
您可以从GitHub下载PointNet++的源代码:
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
或者通过百度网盘:
链接:https://pan.baidu.com/s/1sgTYuqnBVC9p3bib450SOQ
提取码:gujd
数据集下载
- ModelNet40 和 ModelNet10 分类数据集
- ShapeNetPart 部件分割数据集
- Stanford3D Dataset 语义分割数据集
数据集存储路径应遵循:
data/modelnet40_normal_resampled/data/shapenetcore_partanno_segmentation_benchmark_v0_normal/data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/
各数据集百度网盘链接及提取码可在原始文章中找到。
步骤 2:配置环境
确保您的开发环境已安装必要的软件,如PyTorch、CUDA等。推荐使用Python 3.x环境,并根据个人操作系统配置相应的CUDA和CuDNN版本。
步骤 3:运行代码
- 修改源码: 根据需要,在PyCharm或其他IDE中打开项目,初始可尝试运行
train_classification.py。 - 命令行参数: 可以通过命令行参数来选择不同的模型配置和数据集选项,比如使用以下命令运行一个示例:
训练或测试时,若需使用PyCharm内部运行,可通过“编辑配置”添加相应参数。python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg
注意事项
- CUDA错误: 若遇到CUDA相关错误,尝试降低批大小(batch size)。
- 参数设置: 如需调整参数,如学习率、批次大小等,同样在命令行参数中配置。
结语
跟随上述步骤,您应该能成功地在本地环境中搭建并运行PointNet++,进而进行点云的分类或分割实验。记得探索代码中的各项功能和配置项,以充分利用这一优秀框架的强大能力。祝您学习愉快,实验顺利!
以上便是PointNet++源码运行的基本介绍,详细操作和更深入的理解可以通过阅读官方文档和学术论文进一步扩展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355