SmartECM 的项目扩展与二次开发
2025-06-27 22:37:43作者:伍希望
项目的基础介绍
SmartECM 是一个开源项目,专注于电化学加工(ECM)中的实时预测和优化。该项目实现了机器学习模型,用于预测基于加工参数和过程数据的腔体轮廓,并通过可解释性人工智能(XAI)技术,如 SHapley Additive exPlanations(SHAP)、梯度加权类激活映射(Grad-CAM)以及自定义线性回归解释器,来增强模型的解释性。
项目的核心功能
- 实时预测:通过机器学习模型对电化学加工过程中的参数进行实时预测。
- 模型优化:根据实时数据对模型进行优化,以提高预测的准确性。
- 解释性增强:使用 XAI 技术帮助理解模型的预测结果,增强决策的透明度。
项目使用了哪些框架或库?
- TensorFlow:用于构建和训练深度学习模型。
- NumPy:用于数值计算和数据分析。
- 其他自定义库:包括 SHAP、Grad-CAM 和线性回归解释器等。
项目的代码目录及介绍
项目目录结构如下:
- /algorithms:包含解释性算法的实现。
- grad_cam.py:自定义实现的 Grad-CAM 算法,用于可视化卷积神经网络的关注点。
- shap_explainer.py:SHAP 实现的全球解释器,用于解释机器学习模型。
- linear_regression_explainer.py:自定义的线性回归解释器。
- /models:包括研究中使用的机器学习模型。
- logistic_regression.py:逻辑回归模型的实现。
- neural_network.py:神经网络的实现。
- cnn.py:卷积神经网络(CNN)模型的实现。
- /data:数据集的占位符。
对项目进行扩展或者二次开发的方向
- 增加新的模型:可以根据项目需求,集成更多的机器学习模型,如支持向量机(SVM)、决策树等。
- 优化现有模型:通过调整模型参数、使用更先进的算法,或者引入更多的特征来提高模型性能。
- 扩展解释性方法:引入更多的可解释性技术,如 LIME(局部可解释模型-敏感解释)等,来进一步增强模型的可解释性。
- 用户体验改善:优化前端界面,提升用户交互体验。
- 多平台支持:将项目扩展到其他平台,如移动设备或者云服务。
- 集成实时数据处理:引入实时数据流处理技术,如 Apache Kafka,以支持更高效的数据处理和分析。
通过这些扩展和二次开发,SmartECM 项目将能够更好地服务于电化学加工领域,并为研究者和开发者提供一个强大的工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671