SmartECM 的项目扩展与二次开发
2025-06-27 02:58:28作者:伍希望
项目的基础介绍
SmartECM 是一个开源项目,专注于电化学加工(ECM)中的实时预测和优化。该项目实现了机器学习模型,用于预测基于加工参数和过程数据的腔体轮廓,并通过可解释性人工智能(XAI)技术,如 SHapley Additive exPlanations(SHAP)、梯度加权类激活映射(Grad-CAM)以及自定义线性回归解释器,来增强模型的解释性。
项目的核心功能
- 实时预测:通过机器学习模型对电化学加工过程中的参数进行实时预测。
- 模型优化:根据实时数据对模型进行优化,以提高预测的准确性。
- 解释性增强:使用 XAI 技术帮助理解模型的预测结果,增强决策的透明度。
项目使用了哪些框架或库?
- TensorFlow:用于构建和训练深度学习模型。
- NumPy:用于数值计算和数据分析。
- 其他自定义库:包括 SHAP、Grad-CAM 和线性回归解释器等。
项目的代码目录及介绍
项目目录结构如下:
- /algorithms:包含解释性算法的实现。
- grad_cam.py:自定义实现的 Grad-CAM 算法,用于可视化卷积神经网络的关注点。
- shap_explainer.py:SHAP 实现的全球解释器,用于解释机器学习模型。
- linear_regression_explainer.py:自定义的线性回归解释器。
- /models:包括研究中使用的机器学习模型。
- logistic_regression.py:逻辑回归模型的实现。
- neural_network.py:神经网络的实现。
- cnn.py:卷积神经网络(CNN)模型的实现。
- /data:数据集的占位符。
对项目进行扩展或者二次开发的方向
- 增加新的模型:可以根据项目需求,集成更多的机器学习模型,如支持向量机(SVM)、决策树等。
- 优化现有模型:通过调整模型参数、使用更先进的算法,或者引入更多的特征来提高模型性能。
- 扩展解释性方法:引入更多的可解释性技术,如 LIME(局部可解释模型-敏感解释)等,来进一步增强模型的可解释性。
- 用户体验改善:优化前端界面,提升用户交互体验。
- 多平台支持:将项目扩展到其他平台,如移动设备或者云服务。
- 集成实时数据处理:引入实时数据流处理技术,如 Apache Kafka,以支持更高效的数据处理和分析。
通过这些扩展和二次开发,SmartECM 项目将能够更好地服务于电化学加工领域,并为研究者和开发者提供一个强大的工具。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58