探索nom_locate:为Nom解析器带来精准的定位功能
在构建复杂的数据解析系统时,对输入数据进行精确的定位是一项重要的任务。这就是nom_locate出现的原因,它是一个针对Nom解析库的特殊输入类型,旨在帮助你在解析过程中轻松获取和处理 token 的位置信息。
项目介绍
nom_locate 是一个 Rust 库,提供了一个名为 LocatedSpan 的结构体,用于封装 Nom 解析器处理的数据。通过这个结构体,开发者可以获取到 token 在原始输入字符串中的具体位置,包括偏移量、行号和列数等信息。这使得在解析过程中定位错误源或者进行精细化处理变得更加简单。
项目技术分析
nom_locate 主要依赖于Nom这个强大的 Rust 语法分析库。它引入了新的解析器函数 position,该函数可以在解析流程中捕获当前 token 的位置信息,并将其封装进 LocatedSpan 结构体内。LocatedSpan 包含三个主要属性:offset(偏移量),line(行号)以及可变长的fragment(片段)。
在你的解析规则定义中,只需将 LocatedSpan 类型作为输入类型,并在适当的地方调用 position!() 宏,即可在解析结果中获得 token 的位置信息。
项目及技术应用场景
nom_locate 可以广泛应用于需要解析文本并提取结构化数据的场景,例如解析配置文件、XML 或 JSON 格式的数据,甚至是从日志文件中提取关键信息。在这些场景中,能够准确地知道某个 token 出现的位置对于调试和错误报告特别有价值。例如,在解析过程遇到错误时,你可以直接告诉用户错误在哪一行哪一列,而不是仅仅给出一个字符偏移量。
项目特点
- 易于集成:只需添加对
nom_locate的依赖,然后在Nom解析器中利用position!()宏,就可以开始记录 token 位置。 - 高效定位:
LocatedSpan提供了快速访问行号、列号和偏移量的方法,方便进行错误定位或精细处理。 - 灵活的API:
LocatedSpan结构体允许你保存额外的信息,如完整的原始片段,这对于后续处理非常有用。 - 良好的文档支持:详细的文档让你能迅速理解和使用这个库。
总之,如果你正在使用 Nom 构建解析器,那么 nom_locate 将是你不可或缺的工具,它将为你提供更直观和准确的输入数据定位能力,让解析工作更加得心应手。现在就尝试把它加入到你的项目中,提升你的解析体验吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00