【亲测免费】 MiDaS 官方教程
2026-01-16 10:18:51作者:傅爽业Veleda
1. 项目介绍
MiDaS(MIDAS - Monocular Depth Estimation using a Single Image) 是一个用于单目图像深度估计的轻量级深度学习框架。由 ISL-org 团队开发,它提供了高效的预训练模型,可以在各种设备上实时运行。MiDaS 使用 PyTorch 框架构建,旨在促进计算机视觉领域的研究和应用。
2. 项目快速启动
环境准备
确保已安装以下依赖项:
- Python 3.6+
- PyTorch >= 1.7.0
- torchvision
安装 MiDaS
通过 Git 克隆项目到本地:
git clone https://github.com/isl-org/MiDaS.git
cd MiDaS
然后安装依赖库:
pip install -r requirements.txt
预测单张图片
首先下载预训练模型,例如 MiDaS_small.pth,将其放置在 /models 目录下。接下来预测一张名为 test.jpg 的图片:
import torch
from midas.models import load_model
from PIL import Image
model = load_model('MiDaS_small')
model.eval()
image_path = 'test.jpg'
img = Image.open(image_path).convert('RGB').resize((640, 480))
input_tensor = torch.from_numpy(np.array(img)[np.newaxis, :, :, :]).float()
with torch.no_grad():
output = model(input_tensor)
output = output.squeeze().numpy()
depth_map = output / np.max(output)
Image.fromarray(depth_map * 255).save('predicted_depth.png')
3. 应用案例和最佳实践
MiDaS 可用于多种应用场景,如自动驾驶、无人机导航和增强现实。最佳实践包括:
- 数据预处理:在输入模型之前,通常需要将图像调整到特定尺寸(如 640x480)。
- 后处理:预测出的深度图可能需要进行归一化、上界限制等操作以适应具体应用需求。
- 性能优化:对于实时应用,可以利用 GPU 加速或者对模型进行量化以减小内存占用和提高速度。
4. 典型生态项目
- Depth-Hub: 提供了各种深度估算模型的比较和基准测试资源,包括 MiDaS。Link
- PyTorch Hub: MiDaS 的预训练模型可直接从 PyTorch Hub 加载,方便集成进其他项目。
- OpenCV DNN: 可以将 MiDaS 集成到 OpenCV 的深度学习模块(DNN),实现跨平台的应用。
本教程涵盖了 MiDaS 项目的基本使用,更多详细信息及最新更新请参考项目 GitHub 页面:https://github.com/isl-org/MiDaS
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
Ascend Extension for PyTorch
Python
336
401
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
750
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246