X-AnyLabeling项目中Segment Anything 2标注点坐标的JSON格式扩展方案
2025-06-08 21:37:35作者:廉彬冶Miranda
背景与需求分析
在图像分割标注工具X-AnyLabeling中,Segment Anything 2(SAM2)作为核心算法之一,其输出结果通常以JSON格式保存。标准输出包含分割掩膜、置信度等基础信息,但在实际应用场景中,用户可能需要额外记录交互式标注过程中的正负样本点坐标数据。
技术实现路径
1. 源码层面的修改方案
要实现将正负样本点坐标写入JSON文件,需要深入理解SAM2在X-AnyLabeling中的实现架构。关键修改点应集中在标注交互处理模块:
# 伪代码示例:标注点数据结构扩展
class AnnotationPoint:
def __init__(self, x, y, is_positive=True):
self.coord = (x, y) # 坐标信息
self.type = "positive" if is_positive else "negative" # 点类型
2. JSON序列化扩展
在结果导出阶段,需要扩展现有的JSON序列化逻辑,将点标注信息整合到输出结构中:
{
"segmentation": [...],
"confidence": 0.95,
"interactive_points": {
"positive": [[x1,y1], [x2,y2]],
"negative": [[x3,y3], [x4,y4]]
}
}
替代方案建议
对于暂时不想修改源码的用户,可以考虑以下临时解决方案:
- 日志记录法:通过Python的logging模块记录交互点信息
- 元数据附加:利用JSON文件的metadata字段存储额外信息
- 并行存储:单独创建.points文件存储坐标数据
实现注意事项
- 坐标系统一致性:确保记录的坐标与图像坐标系匹配
- 数据版本控制:建议在JSON中添加version字段以兼容后续修改
- 性能考量:大量点标注时需注意JSON文件体积增长问题
总结
在X-AnyLabeling中扩展SAM2的输出格式需要理解其标注数据流的处理机制。通过合理修改标注点数据结构和序列化逻辑,可以实现专业级的标注信息记录。对于生产环境使用,建议采用渐进式改进策略,先在小范围测试验证后再全面部署。
对于计算机视觉标注团队,完整记录交互过程数据将有助于后续的模型迭代和标注质量分析,是构建高质量数据集的重要实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669