X-AnyLabeling项目中Segment Anything 2标注点坐标的JSON格式扩展方案
2025-06-08 01:43:56作者:廉彬冶Miranda
背景与需求分析
在图像分割标注工具X-AnyLabeling中,Segment Anything 2(SAM2)作为核心算法之一,其输出结果通常以JSON格式保存。标准输出包含分割掩膜、置信度等基础信息,但在实际应用场景中,用户可能需要额外记录交互式标注过程中的正负样本点坐标数据。
技术实现路径
1. 源码层面的修改方案
要实现将正负样本点坐标写入JSON文件,需要深入理解SAM2在X-AnyLabeling中的实现架构。关键修改点应集中在标注交互处理模块:
# 伪代码示例:标注点数据结构扩展
class AnnotationPoint:
def __init__(self, x, y, is_positive=True):
self.coord = (x, y) # 坐标信息
self.type = "positive" if is_positive else "negative" # 点类型
2. JSON序列化扩展
在结果导出阶段,需要扩展现有的JSON序列化逻辑,将点标注信息整合到输出结构中:
{
"segmentation": [...],
"confidence": 0.95,
"interactive_points": {
"positive": [[x1,y1], [x2,y2]],
"negative": [[x3,y3], [x4,y4]]
}
}
替代方案建议
对于暂时不想修改源码的用户,可以考虑以下临时解决方案:
- 日志记录法:通过Python的logging模块记录交互点信息
- 元数据附加:利用JSON文件的metadata字段存储额外信息
- 并行存储:单独创建.points文件存储坐标数据
实现注意事项
- 坐标系统一致性:确保记录的坐标与图像坐标系匹配
- 数据版本控制:建议在JSON中添加version字段以兼容后续修改
- 性能考量:大量点标注时需注意JSON文件体积增长问题
总结
在X-AnyLabeling中扩展SAM2的输出格式需要理解其标注数据流的处理机制。通过合理修改标注点数据结构和序列化逻辑,可以实现专业级的标注信息记录。对于生产环境使用,建议采用渐进式改进策略,先在小范围测试验证后再全面部署。
对于计算机视觉标注团队,完整记录交互过程数据将有助于后续的模型迭代和标注质量分析,是构建高质量数据集的重要实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1