探索网球的奥秘:Match Charting Project(MCP)
2024-05-29 12:06:38作者:柯茵沙
探索网球的奥秘:Match Charting Project(MCP)
项目介绍
在竞技体育的世界中,数据是理解运动员表现的关键。Match Charting Project (MCP) 是一项致力于详细记录职业网球比赛的开源项目,由Jeff Sackmann于2013年发起。这个项目不仅填补了公开网球数据的空白,还提供了一种前所未有的方式来分析比赛细节——从每个点的每一拍。
项目技术分析
MCP的数据集包括每场比赛的逐点信息,如击球类型、方向、回球深度,甚至是错误类型。所有这些信息都以电子表格的形式存储,方便用户进行深入的统计和分析。特别值得注意的是,该项目使用了一个名为MatchChart的Excel文档系统,它自动为贡献者生成大量元数据,使数据分析变得更加简单。
应用场景
对于网球爱好者、教练、分析师、甚至研究者来说,MCP是一个宝贵的资源。你可以:
- 分析球员的比赛策略,了解他们在不同情况下的击球选择。
- 研究特定场地或赛事类型对球员表现的影响。
- 比较不同选手的技术特点,揭示潜在的优势和弱点。
- 创新统计方法,探索新的性能指标。
- 开发预测模型,预测比赛结果或球员发展趋势。
项目特点
- 详尽数据:每个点的细节都被记录下来,提供全面的比赛视图。
- 社区驱动:依赖全球贡献者的热情,持续更新且快速增长的数据库。
- 易于访问:数据结构清晰,便于下载和分析。
- 开放源码:遵循Creative Commons许可,鼓励非商业性的使用和分享。
- 直观工具:MatchChart工具简化了数据输入过程,让贡献变得轻松。
加入我们!
无论你是想通过绘制比赛图表来直接贡献,还是希望通过分析现有数据来探索网球世界的深度,MCP都欢迎你的参与。只需访问项目网站,开始你的网球数据分析之旅吧!
[1] 数据查看:http://www.tennisabstract.com/charting/meta.html
[2] 项目起源:http://heavytopspin.com/2013/11/26/the-match-charting-project/
[3] 贡献者列表:http://www.tennisabstract.com/charting/meta.html#contributors
[4] Excel模板:MatchChart 0.x.x.xlsm,在项目仓库内
[5] 官方Twitter:http://www.twitter.com/tennisabstract
让我们一起揭开网球的秘密面纱,探索这项运动的无限可能!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322