DefectDojo 2.45.0版本发布:安全风险管理平台的重要更新
DefectDojo是一个开源的漏洞管理平台,它帮助安全团队和开发人员跟踪、管理和报告应用程序中的安全风险。作为一个功能强大的工具,DefectDojo提供了从风险发现到解决的完整生命周期管理能力。
核心功能更新
本次2.45.0版本带来了多项重要改进,特别是在风险解析和处理方面。其中最值得关注的是对Fortify FPR格式的增强支持,这使得DefectDojo能够更准确地解析Fortify静态代码分析工具生成的报告。同时,新增了对Aqua风险格式的支持,扩展了平台对容器安全扫描结果的兼容性。
在风险识别方面,开发团队增加了对多种风险数据库的支持,包括Slackware安全公告、Arch Linux安全公告、openSUSE风险以及FortiGuard风险ID等。这些更新显著提升了DefectDojo对不同操作系统和软件包风险的识别能力。
数据库与性能优化
本次版本对数据库进行了重要调整,新增了多个法规遵从性选项,并修复了产品收入字段可能出现的负值问题。在性能方面,特别优化了导入过程中的内存处理机制,不再长期维护解析后的发现结果,这显著降低了大规模导入时的内存消耗。
安全与质量改进
安全方面,2.45.0版本引入了会话超时通知功能,增强了用户会话管理的安全性。同时,开发团队持续投入大量精力进行代码质量提升,通过引入和修复大量Ruff静态分析规则,包括B018、B017、N999等多个规则集,显著提高了代码的安全性和可靠性。
用户体验增强
在用户界面方面,本次更新改进了多文件格式选择的美观度,并修复了基准测试中的内部服务器错误问题。同时,对权限文档链接进行了更新,确保用户能够获取准确的权限管理信息。
技术架构演进
从技术架构角度看,2.45.0版本继续推进现代化进程,移除了已弃用的Django导入和is_safe_url方法,并标记异步发现导入功能为已弃用状态。这些变化为未来的技术升级奠定了基础。
容器化与部署
在部署方面,本次版本发布包含了实验性的arm64构建,为使用ARM架构的用户提供了更多选择。同时,统一了Docker入口点脚本,全部使用bash,提高了容器运行的一致性和可靠性。
DefectDojo 2.45.0版本的发布再次证明了该项目在安全风险管理领域的领先地位。通过持续的功能增强、性能优化和安全改进,DefectDojo为安全团队提供了更加强大、可靠的工具,帮助他们更有效地管理和解决应用程序中的安全风险。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00