Marten框架中Include查询与分页统计的陷阱与解决方案
问题背景
在使用Marten ORM框架进行数据查询时,开发人员可能会遇到一个看似简单但实则棘手的问题:当同时使用Include()方法和分页查询时,QueryStatistics返回的TotalResults值会出现异常。这个问题的表现是,统计的总结果数(TotalResults)仅反映当前页面的结果数量,而非整个查询结果集的总数。
问题复现
让我们通过一个典型场景来说明这个问题:
// 获取符合条件的总记录数
var count = session.Query<Target>().Count(x => x.Number > 10); // 返回40
// 执行分页查询
var targetInclude = new Dictionary<string, TargetInclude>();
var list = await session
.Query<Target>()
.Where(x => x.Number > 10)
.Include(x => x.TargetIncludeId, targetInclude)
.Stats(out var queryStats)
.Skip((pageNumber - 1) * pageSize)
.Take(pageSize)
.ToListAsync();
// 断言失败,因为queryStats.TotalResults等于页面大小而非40
queryStats.TotalResults.ShouldBe(count);
技术分析
问题根源
这个问题的根本原因在于Marten生成的SQL查询结构。当同时使用Include()和分页时,Marten会创建一个临时表来存储中间结果,但在这个过程中,原始的总行数统计信息被丢失了。
生成的SQL大致如下:
-- 创建临时表并计算总行数
create temp table mt_temp_id_list2 as (
select d.data, d.document_id, count(*) OVER() as total_rows
from flexible_forms.mt_doc_document_list_view as d
where (d.tenant_id = $1 and CAST(d.data ->> 'IsArchived' as boolean) = $2 and
d.document_id LIKE $3)
desc OFFSET $4 LIMIT $5
);
-- 执行Include关联查询
select d.data from flexible_forms.mt_doc_userprojection as d
where (d.tenant_id = $1 and d.id in (select d.data ->> 'UserId' from mt_temp_id_list2 as d));
-- 从临时表获取数据时重新计算总行数(这里出错)
select d.data, d.document_id, count(*) OVER() as total_rows from mt_temp_id_list2 as d;
可以看到,虽然第一次查询时正确计算了总行数,但在最终从临时表获取数据时又执行了一次count(*) OVER(),这次计算的是临时表中的行数(即分页后的结果数),而非原始查询的总行数。
解决方案
这个问题在Marten 7.26.1版本中已得到修复。升级到该版本后,Include()与QueryStatistics的组合能够正确返回总结果数。
最佳实践建议
-
版本管理:确保使用Marten的最新稳定版本(7.26.1或更高),特别是当查询涉及复杂操作时。
-
测试验证:对于包含Include()的分页查询,应添加测试用例验证TotalResults的正确性。
-
查询监控:在开发阶段,可以检查Marten生成的SQL语句,确保统计逻辑符合预期。
-
替代方案:如果暂时无法升级,可以考虑将Include查询拆分为两步操作,先获取主实体再单独加载关联实体。
总结
Marten框架在处理复杂查询时表现出色,但在某些特定组合操作下可能会出现意外行为。理解框架的内部工作机制有助于快速定位和解决问题。对于这个特定的Include与分页统计问题,最简单的解决方案就是升级到已修复该问题的版本。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00