Marten框架中Include查询与分页统计的陷阱与解决方案
问题背景
在使用Marten ORM框架进行数据查询时,开发人员可能会遇到一个看似简单但实则棘手的问题:当同时使用Include()方法和分页查询时,QueryStatistics返回的TotalResults值会出现异常。这个问题的表现是,统计的总结果数(TotalResults)仅反映当前页面的结果数量,而非整个查询结果集的总数。
问题复现
让我们通过一个典型场景来说明这个问题:
// 获取符合条件的总记录数
var count = session.Query<Target>().Count(x => x.Number > 10); // 返回40
// 执行分页查询
var targetInclude = new Dictionary<string, TargetInclude>();
var list = await session
.Query<Target>()
.Where(x => x.Number > 10)
.Include(x => x.TargetIncludeId, targetInclude)
.Stats(out var queryStats)
.Skip((pageNumber - 1) * pageSize)
.Take(pageSize)
.ToListAsync();
// 断言失败,因为queryStats.TotalResults等于页面大小而非40
queryStats.TotalResults.ShouldBe(count);
技术分析
问题根源
这个问题的根本原因在于Marten生成的SQL查询结构。当同时使用Include()和分页时,Marten会创建一个临时表来存储中间结果,但在这个过程中,原始的总行数统计信息被丢失了。
生成的SQL大致如下:
-- 创建临时表并计算总行数
create temp table mt_temp_id_list2 as (
select d.data, d.document_id, count(*) OVER() as total_rows
from flexible_forms.mt_doc_document_list_view as d
where (d.tenant_id = $1 and CAST(d.data ->> 'IsArchived' as boolean) = $2 and
d.document_id LIKE $3)
desc OFFSET $4 LIMIT $5
);
-- 执行Include关联查询
select d.data from flexible_forms.mt_doc_userprojection as d
where (d.tenant_id = $1 and d.id in (select d.data ->> 'UserId' from mt_temp_id_list2 as d));
-- 从临时表获取数据时重新计算总行数(这里出错)
select d.data, d.document_id, count(*) OVER() as total_rows from mt_temp_id_list2 as d;
可以看到,虽然第一次查询时正确计算了总行数,但在最终从临时表获取数据时又执行了一次count(*) OVER(),这次计算的是临时表中的行数(即分页后的结果数),而非原始查询的总行数。
解决方案
这个问题在Marten 7.26.1版本中已得到修复。升级到该版本后,Include()与QueryStatistics的组合能够正确返回总结果数。
最佳实践建议
-
版本管理:确保使用Marten的最新稳定版本(7.26.1或更高),特别是当查询涉及复杂操作时。
-
测试验证:对于包含Include()的分页查询,应添加测试用例验证TotalResults的正确性。
-
查询监控:在开发阶段,可以检查Marten生成的SQL语句,确保统计逻辑符合预期。
-
替代方案:如果暂时无法升级,可以考虑将Include查询拆分为两步操作,先获取主实体再单独加载关联实体。
总结
Marten框架在处理复杂查询时表现出色,但在某些特定组合操作下可能会出现意外行为。理解框架的内部工作机制有助于快速定位和解决问题。对于这个特定的Include与分页统计问题,最简单的解决方案就是升级到已修复该问题的版本。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00