Marten框架中Include查询与分页统计的陷阱与解决方案
问题背景
在使用Marten ORM框架进行数据查询时,开发人员可能会遇到一个看似简单但实则棘手的问题:当同时使用Include()方法和分页查询时,QueryStatistics返回的TotalResults值会出现异常。这个问题的表现是,统计的总结果数(TotalResults)仅反映当前页面的结果数量,而非整个查询结果集的总数。
问题复现
让我们通过一个典型场景来说明这个问题:
// 获取符合条件的总记录数
var count = session.Query<Target>().Count(x => x.Number > 10); // 返回40
// 执行分页查询
var targetInclude = new Dictionary<string, TargetInclude>();
var list = await session
.Query<Target>()
.Where(x => x.Number > 10)
.Include(x => x.TargetIncludeId, targetInclude)
.Stats(out var queryStats)
.Skip((pageNumber - 1) * pageSize)
.Take(pageSize)
.ToListAsync();
// 断言失败,因为queryStats.TotalResults等于页面大小而非40
queryStats.TotalResults.ShouldBe(count);
技术分析
问题根源
这个问题的根本原因在于Marten生成的SQL查询结构。当同时使用Include()和分页时,Marten会创建一个临时表来存储中间结果,但在这个过程中,原始的总行数统计信息被丢失了。
生成的SQL大致如下:
-- 创建临时表并计算总行数
create temp table mt_temp_id_list2 as (
select d.data, d.document_id, count(*) OVER() as total_rows
from flexible_forms.mt_doc_document_list_view as d
where (d.tenant_id = $1 and CAST(d.data ->> 'IsArchived' as boolean) = $2 and
d.document_id LIKE $3)
desc OFFSET $4 LIMIT $5
);
-- 执行Include关联查询
select d.data from flexible_forms.mt_doc_userprojection as d
where (d.tenant_id = $1 and d.id in (select d.data ->> 'UserId' from mt_temp_id_list2 as d));
-- 从临时表获取数据时重新计算总行数(这里出错)
select d.data, d.document_id, count(*) OVER() as total_rows from mt_temp_id_list2 as d;
可以看到,虽然第一次查询时正确计算了总行数,但在最终从临时表获取数据时又执行了一次count(*) OVER(),这次计算的是临时表中的行数(即分页后的结果数),而非原始查询的总行数。
解决方案
这个问题在Marten 7.26.1版本中已得到修复。升级到该版本后,Include()与QueryStatistics的组合能够正确返回总结果数。
最佳实践建议
-
版本管理:确保使用Marten的最新稳定版本(7.26.1或更高),特别是当查询涉及复杂操作时。
-
测试验证:对于包含Include()的分页查询,应添加测试用例验证TotalResults的正确性。
-
查询监控:在开发阶段,可以检查Marten生成的SQL语句,确保统计逻辑符合预期。
-
替代方案:如果暂时无法升级,可以考虑将Include查询拆分为两步操作,先获取主实体再单独加载关联实体。
总结
Marten框架在处理复杂查询时表现出色,但在某些特定组合操作下可能会出现意外行为。理解框架的内部工作机制有助于快速定位和解决问题。对于这个特定的Include与分页统计问题,最简单的解决方案就是升级到已修复该问题的版本。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









