applied-machine-learning-intensive 的安装和配置教程
2025-04-27 13:27:53作者:尤峻淳Whitney
1. 项目基础介绍
applied-machine-learning-intensive 是由 Google 开源的一个项目,旨在通过一系列的练习和教程,帮助用户深入学习应用机器学习的各个方面。该项目涵盖了从基础数据预处理到高级模型训练和部署的内容,适合希望通过实践来提高机器学习技能的学习者。
该项目主要使用 Python 编程语言,同时也可能涉及到一些其他的技术栈,如 HTML/CSS 用于前端展示,以及 JavaScript 用于交互式编程。
2. 项目使用的关键技术和框架
- Python: 作为主要编程语言,Python 提供了丰富的库和框架,如 NumPy、Pandas 用于数据处理,Scikit-learn、TensorFlow 和 Keras 用于机器学习模型的构建和训练。
- Jupyter Notebook: 项目中的教程和练习通常以 Jupyter Notebook 的形式提供,便于用户编写代码和查看结果。
- TensorFlow: TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发,用于高性能数值计算,适用于机器学习和深度学习应用。
- Keras: Keras 是一个高级神经网络API,它能够以TensorFlow、CNTK 或 Theano 作为后端运行。Keras 为快速实验提供了便利,有助于加速从想法到实验再到生产的过程。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的计算机上已经安装了以下软件:
- Python (建议版本 3.5 及以上)
- pip (Python 包管理器)
- Git (用于克隆项目代码)
安装步骤
-
克隆项目仓库
打开命令行终端,运行以下命令来克隆项目仓库:
git clone https://github.com/google/applied-machine-learning-intensive.git -
安装依赖项
进入项目目录,使用 pip 安装项目所需的所有依赖项。通常,这些依赖项会在项目中的
requirements.txt文件列出。运行以下命令:cd applied-machine-learning-intensive pip install -r requirements.txt -
运行示例代码
安装完所有依赖后,您可以运行项目中的示例代码来检验安装是否成功。进入包含 Jupyter Notebook 的目录,并运行以下命令:
jupyter notebook这将启动 Jupyter Notebook 服务器,并在默认的 Web 浏览器中打开一个新标签页,显示项目中的所有 Jupyter 文件。
按照以上步骤操作后,您应该能够成功安装和配置 applied-machine-learning-intensive 项目,并开始学习和实践机器学习相关的内容。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1