glTFast 6.12.0版本发布:动画系统升级与稳定性增强
glTFast是Unity生态中一款专注于高效加载和导出glTF格式3D模型的开源库,它通过优化数据流处理和内存管理,为开发者提供了轻量级且高性能的glTF解决方案。最新发布的6.12.0版本带来了动画系统的重要升级和多项稳定性改进,进一步提升了在Unity项目中使用glTF资产的体验。
Playables动画系统支持
本次更新最显著的特性是新增了对Unity Playables系统的支持。Playables是Unity提供的一个强大的动画API层,它允许开发者以更灵活的方式控制和混合动画片段。
在之前的版本中,glTFast仅能通过传统的Animation组件来处理导入的glTF动画。6.12.0版本现在提供了选项,让开发者可以选择使用Playables系统来导入运行时动画。这种改进带来了几个优势:
-
更高效的动画混合:Playables系统可以实现多个动画片段的无缝混合,特别适合需要复杂动画交互的场景。
-
更精细的控制:开发者可以通过PlayableGraph API精确控制动画的播放状态、混合权重和速度等参数。
-
更好的性能:对于包含大量动画的场景,Playables系统通常能提供更好的性能表现。
动画导入兼容性增强
新版本还改进了对特殊glTF文件的兼容性处理,现在能够正确导入那些访问器(accessor)没有关联缓冲视图(buffer view)的动画数据。这种情况在某些特定的glTF导出工具生成的文件中可能会出现。
在glTF规范中,访问器通常通过缓冲视图来引用实际的二进制数据,但规范也允许访问器直接包含数据值。6.12.0版本完善了对此类边缘情况的处理,确保动画数据能够被正确解析和导入。
稳定性修复与改进
6.12.0版本包含多项稳定性修复,解决了开发者在实际使用中遇到的一些问题:
-
多图元网格处理:修复了当导入包含多个图元(primitive)且带有顶点颜色的网格时可能抛出的InvalidOperationException异常。这个问题源于Unity原生容器安全系统的限制,新版本通过改进数据处理流程解决了这一问题。
-
子网格导出修正:改进了glTF导出功能,现在能够正确处理那些基顶点(base vertex)不为零的子网格。在之前的版本中,这类子网格的索引可能会被错误导出,导致模型显示异常。
-
异步操作可靠性:增强了GltfImport和GltfWriter类中异步操作的健壮性,确保在复杂的运行时环境下也能稳定工作。这对于需要动态加载大量glTF内容的应用程序尤为重要。
升级建议
对于正在使用glTFast的项目,6.12.0版本是一个值得升级的稳定版本,特别是那些需要复杂动画功能的应用场景。开发者可以通过以下方式充分利用新特性:
-
对于需要高级动画控制的场景,尝试切换到Playables系统以获得更好的性能和灵活性。
-
检查项目中是否存在之前因兼容性问题无法正确导入的glTF文件,新版本可能已经解决了这些问题。
-
如果项目涉及glTF导出功能,验证子网格导出是否正确,特别是那些使用非零基顶点的模型。
glTFast持续致力于提供高效、稳定的glTF处理方案,6.12.0版本的发布进一步巩固了其在Unity生态中的地位,为开发者处理3D内容提供了更强大的工具。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









