OpenVINO Notebooks中LLM在NPU上的运行支持解析
2025-06-28 05:14:04作者:鲍丁臣Ursa
在最新发布的OpenVINO 2025.0版本中,官方宣布了对多款大型语言模型(Large Language Model, LLM)在神经处理单元(NPU)上的支持能力。这一技术进展为开发者提供了更多硬件加速选择,但在实际应用过程中需要注意一些关键细节。
支持的LLM模型列表
根据OpenVINO官方文档,目前可在NPU上运行的LLM模型包括:
- Llama 3 8B
- Llama 2 7B
- Mistral-v0.2-7B
- Qwen2-7B-Instruct
- Phi-3 Mini Instruct
这些模型经过优化后能够充分利用Intel Core Ultra处理器中的NPU加速能力,显著提升推理性能。
使用注意事项
开发者需要特别注意,并非所有OpenVINO Notebooks示例都默认支持NPU运行。以llm-chatbot为例,标准版笔记本(llm-chatbot.ipynb)并未设计NPU支持,而需要使用专门优化的llm-chatbot-generate-api.ipynb版本。
这一区别源于不同笔记本针对的硬件加速方案不同。标准版主要面向CPU/GPU优化,而generate-api版本则专门为NPU使用场景设计,包含了必要的接口适配和优化策略。
技术实现分析
OpenVINO通过以下技术实现LLM在NPU上的高效运行:
- 模型量化:将FP32模型转换为INT8等低精度格式,减少计算和内存需求
- 算子优化:针对NPU架构特点重写关键算子
- 内存管理:优化张量布局和内存访问模式
- 流水线设计:重叠计算和数据传输
扩展应用场景
虽然当前讨论集中在LLM模型,但OpenVINO对NPU的支持实际上覆盖了更广泛的应用场景:
- 文本生成(Text Generation)
- 多模态处理(Multimodal Processing)
- 语音合成(Text-to-Speech)
- 图像生成(Text-to-Image)
开发者可以根据具体需求选择相应的优化版本笔记本,或参考官方文档进行自定义适配。
最佳实践建议
对于希望在NPU上运行LLM的开发者,建议:
- 确认硬件配置包含Intel AI Boost NPU
- 安装最新版OpenVINO和驱动程序
- 使用专门针对NPU优化的笔记本版本
- 监控资源利用率以评估加速效果
- 考虑模型大小与NPU内存容量的匹配关系
随着OpenVINO生态的持续发展,预计未来会有更多模型和示例加入对NPU的原生支持,为AI推理提供更高效的硬件加速方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258