NCNN项目在HarmonyOS上的线程亲和性优化
背景介绍
NCNN作为腾讯开源的高性能神经网络推理框架,其多线程调度机制对于性能优化至关重要。线程亲和性(Thread Affinity)是多线程编程中的一项关键技术,它通过将线程绑定到特定的CPU核心上执行,可以减少线程迁移带来的缓存失效和上下文切换开销,从而提高程序性能。
问题发现
在HarmonyOS系统上,NCNN原有的线程亲和性实现出现了兼容性问题。具体表现为无法正确获取CPU核心的线程兄弟(thread siblings)信息,导致线程调度无法达到最优性能。
技术分析
原有实现机制
NCNN原本通过读取Linux系统的标准接口文件/sys/devices/system/cpu/cpu%d/topology/thread_siblings来获取CPU核心的线程兄弟信息。这个文件在标准Linux系统中记录了每个CPU核心的超线程兄弟关系,对于多核处理器尤其是支持超线程的CPU来说至关重要。
HarmonyOS的差异
HarmonyOS作为华为自主研发的操作系统,虽然基于Linux内核,但在某些系统接口实现上存在差异。具体到这个问题,HarmonyOS没有提供标准的thread_siblings文件,而是使用了thread_siblings_list文件来记录相同的信息。
影响范围
这个问题直接影响NCNN在HarmonyOS系统上的多线程性能表现:
- 无法正确识别CPU核心的超线程关系
- 可能导致线程调度到不合适的核心上
- 增加不必要的线程迁移开销
- 降低缓存命中率
解决方案
腾讯NCNN团队迅速响应并提供了修复方案,主要修改点包括:
- 优先尝试读取
thread_siblings_list文件 - 保持对标准Linux系统的向后兼容性
- 增加对文件读取失败的处理逻辑
技术实现细节
修复后的实现采用了更加健壮的文件读取策略:
- 首先尝试读取HarmonyOS风格的
thread_siblings_list - 如果失败则回退到标准Linux的
thread_siblings - 增加错误处理逻辑确保程序健壮性
这种实现既保证了在HarmonyOS上的兼容性,又不会影响在其他Linux系统上的正常运行。
性能影响
正确的线程亲和性设置可以带来显著的性能提升:
- 减少线程迁移带来的缓存失效
- 降低上下文切换开销
- 提高指令级并行效率
- 优化内存访问模式
特别是在神经网络推理这种计算密集型场景下,这些优化可以带来可观的性能提升。
总结
这次优化展示了NCNN团队对多平台兼容性的重视,也体现了开源社区快速响应和解决问题的能力。对于开发者而言,这提醒我们在跨平台开发时需要特别注意系统级接口的差异,特别是在性能关键路径上的实现。
对于使用NCNN的HarmonyOS开发者来说,这一修复将直接提升他们的应用性能,特别是在需要高性能神经网络推理的场景下。这也为其他需要在HarmonyOS上部署AI应用的开发者提供了有价值的参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00