Eleventy 中全局计算数据的合并问题解析
2025-05-12 15:11:03作者:凌朦慧Richard
在 Eleventy 静态网站生成器中,开发者经常需要处理全局计算数据(eleventyComputed)的配置问题。最近发现了一个值得注意的行为模式:当多个插件通过 addGlobalData 方法添加 eleventyComputed 属性时,后添加的配置会覆盖之前的配置,而不是像预期那样进行深度合并。
问题背景
Eleventy 提供了一个强大的数据层系统,其中 eleventyComputed 是一个特殊属性,允许开发者定义基于其他数据的动态计算属性。许多插件会通过 config.addGlobalData 方法来向项目中注入全局的计算数据。
典型的使用场景如下:
// 插件1
config.addGlobalData("eleventyComputed", {
  foo(data) {
    // 计算逻辑
  }
});
// 插件2
config.addGlobalData("eleventyComputed", {
  bar(data) {
    // 计算逻辑
  }
});
开发者期望这两个配置会被深度合并,最终得到一个包含 foo 和 bar 两个计算属性的对象。然而实际上,后加载的插件会完全覆盖之前的 eleventyComputed 配置。
技术原理
这个问题源于 Eleventy 内部处理 addGlobalData 的方式。当直接传递对象时,Eleventy 会执行浅层合并而非深度合并。对于函数类型的值,情况更为特殊 - Eleventy 会立即执行传入的函数,这使得直接传递计算函数变得复杂。
解决方案
Eleventy 核心团队提供了两种解决方案:
- 使用路径式添加:通过指定完整路径来避免覆盖问题
 
config.addGlobalData("eleventyComputed.foo", () => {
  return (data) => { /* 计算逻辑 */ };
});
config.addGlobalData("eleventyComputed.bar", () => {
  return (data) => { /* 计算逻辑 */ };
});
- 等待新版本:Eleventy 3.0.0-alpha.18 及更高版本将自动合并传递给 
addGlobalData的对象,无论深度数据合并功能是否启用。 
最佳实践
对于插件开发者,建议采用路径式添加方法,这能确保与其他插件的兼容性。同时需要注意:
- 当需要返回函数时,必须使用双层函数结构
 - 明确指定属性路径可以避免意外的覆盖行为
 - 考虑向后兼容性,特别是对于支持多个 Eleventy 版本的插件
 
对于项目开发者,如果遇到多个插件的计算属性冲突问题,可以:
- 检查插件是否使用了最新的添加方式
 - 考虑升级到支持自动合并的 Eleventy 版本
 - 必要时可以手动合并不同插件的计算属性
 
未来展望
Eleventy 团队正在逐步淘汰 dataDeepMerge 功能,转而采用更智能的自动合并策略。这一变化将简化配置管理,使开发者能够更专注于业务逻辑而非数据合并的细节问题。
理解这些底层机制有助于开发者更好地构建可维护的 Eleventy 项目,特别是在使用多个插件时能够避免意外的配置冲突。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444