深度学习工作坊:神经网络基础与实践指南
2025-07-04 11:15:45作者:卓炯娓
神经网络基础概念
神经网络本质上是逻辑回归的强大扩展版本。与线性和逻辑回归类似,它们接收输入数据并将其映射到输出结果,但不需要预先知道真实的数据方程形式。神经网络模型就是一种具有任意强大表达能力的数学模型。
神经网络的结构理解
我们可以通过两种方式来理解神经网络的结构:
-
矩阵图示法:将神经网络看作一系列矩阵运算的堆叠,每一层都是对数据的线性变换和非线性激活的组合。这种视角下,神经网络就像是一连串逻辑回归模型的堆叠。
-
神经元图示法:采用类似生物神经元的连接方式展示网络结构,这种表示更直观地展现了信息在网络中的流动过程。
神经网络关键组件解析
网络层与节点
- 输入节点:对应输入数据的特征维度
- 隐藏节点:中间层的处理单元,执行数据的非线性变换
- 输出节点:产生最终预测结果的单元
从线性代数角度看,权重矩阵实现了数据在不同维度空间之间的投影变换。例如,一个4输入到3输出的权重矩阵,就是将数据从4维空间投影到3维空间。
激活函数
激活函数(图中橙色部分)是对线性变换结果施加的非线性转换。常见的激活函数包括:
- tanh函数(双曲正切)
- ReLU(修正线性单元)
- sigmoid/logistic函数(用于二分类输出层)
实践案例:分子生物降解性预测
我们将使用UCI机器学习库中的QSAR生物降解数据集,通过41种化学描述符预测化合物是否可生物降解。
数据准备
import pandas as pd
X = pd.read_csv('data/biodeg_X.csv', index_col=0) # 41维特征
y = pd.read_csv('data/biodeg_y.csv', index_col=0) # 二分类标签
神经网络模型设计
针对这个分类问题,我们设计如下网络结构:
- 输入层:41个节点(对应41个特征)
- 隐藏层:20个节点(压缩表示)
- 输出层:1个节点(二分类概率)
from dl_workshop.answers import noise
import jax.numpy as np
from dl_workshop.answers import logistic
# 初始化参数
params = {
'w1': noise((41, 20)), # 输入到隐藏层权重
'b1': noise((20,)), # 隐藏层偏置
'w2': noise((20, 1)), # 隐藏到输出层权重
'b2': noise((1,)) # 输出层偏置
}
# 定义网络前向传播
def neural_network_model(theta, x):
a1 = np.tanh(np.dot(x, theta['w1']) + theta['b1']) # 隐藏层使用tanh激活
a2 = logistic(np.dot(a1, theta['w2']) + theta['b2']) # 输出层使用logistic激活
return a2
模型训练与优化
使用梯度下降优化网络参数:
from dl_workshop.answers import model_optimization_loop, logistic_loss
losses, params = model_optimization_loop(
params,
neural_network_model,
logistic_loss,
X.values,
y.values,
step_size=0.0001
)
模型评估
通过混淆矩阵评估分类性能:
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
y_pred = neural_network_model(params, X.values)
sns.heatmap(confusion_matrix(y, np.round(y_pred)))
plt.xlabel('预测值')
plt.ylabel('真实值')
plt.show()
深度学习关键要素总结
- 模型架构:定义数据如何从输入流向输出
- 损失函数:量化模型预测与真实值的差距
- 优化算法:调整参数以最小化损失函数
这三个要素构成了所有深度学习系统的基础,无论是简单的线性回归还是复杂的深度神经网络。
当前方法的局限性与扩展方向
本文介绍的是深度学习的基础知识,实际应用中还需要考虑:
- 数据划分(训练集/验证集/测试集)
- 交叉验证与模型选择
- 超参数调优(学习率、优化器等)
- 正则化技术(L1/L2正则、dropout等)
- 批量归一化等训练技巧
结语
深度学习本质上是对具有大量参数的模型进行优化的过程。在现阶段,它并非真正的"人工智能",而是一种强大的从输入到输出的映射工具。理解其基本原理后,我们不必对其感到畏惧,而应该将其视为解决复杂问题的有效工具之一。
通过本教程,您已经掌握了神经网络的基本原理和实践方法,为进一步探索更复杂的深度学习模型奠定了坚实基础。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26