CrateDB分区表调整分片数导致数据丢失问题分析
问题背景
在CrateDB数据库使用过程中,当用户尝试对分区表执行ALTER TABLE操作来增加某个分区的分片数量(number_of_shards)时,如果新设置的分片数超过了系统配置的routing.allocation.total_shards_per_node
限制,会导致该分区的数据完全丢失。这是一个严重的数据完整性问题,特别是在生产环境中可能会造成不可逆的数据损失。
问题复现步骤
- 首先创建一个分区表t1,设置每个节点最多允许2个分片:
CREATE TABLE t1 (
a INTEGER,
b INTEGER
) CLUSTERED INTO 1 SHARDS
PARTITIONED BY (a)
WITH ("routing.allocation.total_shards_per_node" = 2);
- 插入测试数据并刷新表:
INSERT INTO t1 VALUES (1, 1), (1, 2), (2, 1), (2, 2);
REFRESH TABLE t1;
- 尝试将分区a=1的分片数增加到64:
ALTER TABLE t1 PARTITION (a = 1) SET ("blocks.write" = true);
ALTER TABLE t1 PARTITION (a = 1) SET (number_of_shards = 64);
- 查询发现a=1分区的数据已经丢失:
SELECT * FROM t1;
问题原因分析
这个问题的根本原因在于CrateDB在执行分片数调整操作时,没有充分考虑分片分配限制的约束条件。具体表现为:
-
当新设置的分片数超过
routing.allocation.total_shards_per_node
限制时,系统没有进行前置检查并阻止操作执行。 -
操作执行过程中,系统会先删除原有分片,然后尝试创建新分片。当新分片无法分配时,数据已经丢失且无法恢复。
-
即使后续调整
routing.allocation.total_shards_per_node
参数增加限制,也无法恢复已经丢失的数据,因为原始分片已经被删除。
解决方案
CrateDB开发团队已经修复了这个问题,修复内容包括:
-
在执行ALTER TABLE修改分片数操作前,增加了对
routing.allocation.total_shards_per_node
限制的检查。 -
如果新设置的分片数超过限制,系统会直接返回错误,而不是继续执行可能导致数据丢失的操作。
-
修复后的版本确保只有在能够保证新分片可以成功分配的情况下,才会执行分片数调整操作。
最佳实践建议
为了避免类似问题,建议用户:
-
在执行任何可能影响数据完整性的DDL操作前,先进行充分的测试。
-
修改分片数等重要参数时,先检查当前系统的分配限制设置。
-
定期备份重要数据,特别是在执行表结构调整前。
-
及时升级到已修复该问题的版本(5.9.9或5.10.1及以上)。
总结
这个案例展示了数据库系统参数间相互约束的重要性。作为分布式数据库,CrateDB需要确保各种配置参数的协调性,特别是在执行可能影响数据完整性的操作时,必须进行全面的前置检查。开发团队通过增加参数约束检查,有效防止了可能导致数据丢失的操作执行,提高了系统的可靠性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









