CrateDB分区表调整分片数导致数据丢失问题分析
问题背景
在CrateDB数据库使用过程中,当用户尝试对分区表执行ALTER TABLE操作来增加某个分区的分片数量(number_of_shards)时,如果新设置的分片数超过了系统配置的routing.allocation.total_shards_per_node限制,会导致该分区的数据完全丢失。这是一个严重的数据完整性问题,特别是在生产环境中可能会造成不可逆的数据损失。
问题复现步骤
- 首先创建一个分区表t1,设置每个节点最多允许2个分片:
CREATE TABLE t1 (
a INTEGER,
b INTEGER
) CLUSTERED INTO 1 SHARDS
PARTITIONED BY (a)
WITH ("routing.allocation.total_shards_per_node" = 2);
- 插入测试数据并刷新表:
INSERT INTO t1 VALUES (1, 1), (1, 2), (2, 1), (2, 2);
REFRESH TABLE t1;
- 尝试将分区a=1的分片数增加到64:
ALTER TABLE t1 PARTITION (a = 1) SET ("blocks.write" = true);
ALTER TABLE t1 PARTITION (a = 1) SET (number_of_shards = 64);
- 查询发现a=1分区的数据已经丢失:
SELECT * FROM t1;
问题原因分析
这个问题的根本原因在于CrateDB在执行分片数调整操作时,没有充分考虑分片分配限制的约束条件。具体表现为:
-
当新设置的分片数超过
routing.allocation.total_shards_per_node限制时,系统没有进行前置检查并阻止操作执行。 -
操作执行过程中,系统会先删除原有分片,然后尝试创建新分片。当新分片无法分配时,数据已经丢失且无法恢复。
-
即使后续调整
routing.allocation.total_shards_per_node参数增加限制,也无法恢复已经丢失的数据,因为原始分片已经被删除。
解决方案
CrateDB开发团队已经修复了这个问题,修复内容包括:
-
在执行ALTER TABLE修改分片数操作前,增加了对
routing.allocation.total_shards_per_node限制的检查。 -
如果新设置的分片数超过限制,系统会直接返回错误,而不是继续执行可能导致数据丢失的操作。
-
修复后的版本确保只有在能够保证新分片可以成功分配的情况下,才会执行分片数调整操作。
最佳实践建议
为了避免类似问题,建议用户:
-
在执行任何可能影响数据完整性的DDL操作前,先进行充分的测试。
-
修改分片数等重要参数时,先检查当前系统的分配限制设置。
-
定期备份重要数据,特别是在执行表结构调整前。
-
及时升级到已修复该问题的版本(5.9.9或5.10.1及以上)。
总结
这个案例展示了数据库系统参数间相互约束的重要性。作为分布式数据库,CrateDB需要确保各种配置参数的协调性,特别是在执行可能影响数据完整性的操作时,必须进行全面的前置检查。开发团队通过增加参数约束检查,有效防止了可能导致数据丢失的操作执行,提高了系统的可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00