OpenRLHF项目中填充策略的技术解析:右填充与左填充的选择
在OpenRLHF项目的实际应用中,填充策略的选择是一个值得深入探讨的技术细节。本文将从技术实现和理论依据两个维度,分析为什么在SFT/DPO训练中推荐使用右填充(right padding),而在生成任务中则推荐使用左填充(left padding)。
填充策略的基本概念
填充(padding)是处理变长序列时的常见技术手段。在自然语言处理任务中,由于文本长度不一致,我们需要通过填充来使所有样本达到相同长度,以便批量处理。填充策略主要分为两种:
- 右填充:在序列的右侧添加填充标记
- 左填充:在序列的左侧添加填充标记
OpenRLHF中的填充实现
在OpenRLHF的SFT训练实现中,确实采用了硬编码的右填充策略。这种设计选择并非随意为之,而是基于以下技术考量:
-
注意力掩码的有效性:在监督微调(SFT)和直接偏好优化(DPO)训练过程中,右填充能更好地配合注意力掩码机制,有效屏蔽填充部分对模型训练的影响。
-
提示掩蔽需求:对于包含提示(prompt)和回复(response)的对话数据,右填充可以确保提示部分不被掩蔽,使模型能够充分学习提示与回复之间的关联。
-
训练稳定性:右填充保持了序列开始部分的结构完整性,有助于模型在训练初期建立稳定的表征。
生成阶段的填充策略
与训练阶段不同,在文本生成任务中,OpenRLHF推荐使用左填充策略,这主要基于以下原因:
-
生成效率:左填充使有效token集中在序列右侧,便于自回归生成时高效处理。
-
缓存利用:现代Transformer架构的KV缓存机制在左填充下能获得更好的计算效率。
-
长序列处理:对于长序列生成任务,左填充能更好地保持生成连贯性。
训练与生成阶段的策略兼容性
一个常见的疑问是:使用右填充训练的模型能否在左填充条件下良好工作?实践证明这是可行的,主要原因在于:
-
位置编码的鲁棒性:现代Transformer架构的位置编码能够适应不同的填充策略。
-
注意力机制的自适应性:自注意力机制本身不依赖于绝对位置,能够处理不同填充方式。
-
模型容量:足够大的语言模型具备策略适应的能力。
实际应用建议
在实际部署OpenRLHF项目时,建议开发者:
- 严格遵循项目推荐的填充策略
- 在SFT/DPO阶段保持右填充
- 在推理生成阶段切换为左填充
- 注意验证不同阶段的数据预处理一致性
这种填充策略的组合在实践中被证明能够平衡训练效果和推理效率,是经过充分验证的技术方案。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









