VictoriaMetrics中大规模CPU利用率监控的优化实践
2025-05-16 22:42:15作者:凤尚柏Louis
问题背景
在超大规模基础设施环境中(超过10万台服务器),监控CPU利用率是一项极具挑战性的任务。使用VictoriaMetrics时,用户遇到了查询执行失败的问题,主要原因是内存不足和查询超时。本文将深入分析问题原因,并提供系统化的解决方案。
错误分析
当执行CPU利用率查询时,系统报出两类典型错误:
- 内存不足错误:查询需要处理约1.7GB内存,但vmselect仅分配了约1.1GB内存
- 超大规模查询错误:处理1417040个时间序列时,需要约35.5GB内存,但可用内存仅4.5GB
这些错误表明,原始查询设计无法适应大规模基础设施的监控需求。
根本原因
内存计算机制
VictoriaMetrics使用特定算法计算查询所需内存:
时间序列点数 = 1 + (结束时间 - 开始时间) / 步长间隔
总数据点数 = 时间序列数量 × 每序列点数
固定开销 = 时间序列数量 × 1000
数据点内存 = 总数据点数 × 16字节
总内存需求 = 固定开销 + 数据点内存
问题查询分析
原始查询存在几个关键问题:
- 使用了嵌套的子查询结构
- 默认步长(15秒)过小,导致数据点数量爆炸式增长
- 没有考虑大规模时间序列的内存占用特性
解决方案
1. 调整查询步长
通过增加查询步长可以显著降低内存需求。计算示例如下:
| 步长(秒) | 内存需求(GB) | 是否可行 |
|---|---|---|
| 15 | 35.5 | 不可行 |
| 30 | 18.5 | 不可行 |
| 60 | 9.9 | 可能 |
| 120 | 5.7 | 可行 |
| 180 | 4.3 | 可行 |
实施建议:在Grafana查询或vmalert配置中将步长设置为180秒。
2. 优化告警规则配置
对于告警规则,可以在vmalert的group配置中设置步长参数:
groups:
- name: cpu-alerts
interval: 3m
params:
step: ["180s"]
3. 使用记录规则预计算
建立预计算规则可以减轻实时查询压力:
groups:
- name: recording_rules
rules:
- record: cpu_utilization
expr: 100 - (avg by (hostname)(rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100
4. 系统参数调优
根据实际情况调整以下参数:
- 增加
-memory.allowedPercent提高内存分配比例 - 调整
-search.maxQueryDuration延长查询超时时间 - 在反向代理层(如Nginx)增加超时设置
最佳实践建议
- 分片查询:按服务器分组或地域分片执行查询
- 分层监控:建立多级监控体系,先汇总后详细
- 资源规划:根据时间序列数量预估所需内存
- 定期优化:随着基础设施增长持续调整监控策略
总结
在大规模环境中使用VictoriaMetrics监控CPU利用率时,需要特别注意查询设计和系统配置。通过合理设置步长、优化告警规则、使用预计算和系统调优等手段,可以有效地解决内存不足和查询超时问题。关键在于理解VictoriaMetrics的内存计算机制,并根据实际环境特点进行针对性优化。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92