VictoriaMetrics中大规模CPU利用率监控的优化实践
2025-05-16 10:36:49作者:凤尚柏Louis
问题背景
在超大规模基础设施环境中(超过10万台服务器),监控CPU利用率是一项极具挑战性的任务。使用VictoriaMetrics时,用户遇到了查询执行失败的问题,主要原因是内存不足和查询超时。本文将深入分析问题原因,并提供系统化的解决方案。
错误分析
当执行CPU利用率查询时,系统报出两类典型错误:
- 内存不足错误:查询需要处理约1.7GB内存,但vmselect仅分配了约1.1GB内存
- 超大规模查询错误:处理1417040个时间序列时,需要约35.5GB内存,但可用内存仅4.5GB
这些错误表明,原始查询设计无法适应大规模基础设施的监控需求。
根本原因
内存计算机制
VictoriaMetrics使用特定算法计算查询所需内存:
时间序列点数 = 1 + (结束时间 - 开始时间) / 步长间隔
总数据点数 = 时间序列数量 × 每序列点数
固定开销 = 时间序列数量 × 1000
数据点内存 = 总数据点数 × 16字节
总内存需求 = 固定开销 + 数据点内存
问题查询分析
原始查询存在几个关键问题:
- 使用了嵌套的子查询结构
- 默认步长(15秒)过小,导致数据点数量爆炸式增长
- 没有考虑大规模时间序列的内存占用特性
解决方案
1. 调整查询步长
通过增加查询步长可以显著降低内存需求。计算示例如下:
步长(秒) | 内存需求(GB) | 是否可行 |
---|---|---|
15 | 35.5 | 不可行 |
30 | 18.5 | 不可行 |
60 | 9.9 | 可能 |
120 | 5.7 | 可行 |
180 | 4.3 | 可行 |
实施建议:在Grafana查询或vmalert配置中将步长设置为180秒。
2. 优化告警规则配置
对于告警规则,可以在vmalert的group配置中设置步长参数:
groups:
- name: cpu-alerts
interval: 3m
params:
step: ["180s"]
3. 使用记录规则预计算
建立预计算规则可以减轻实时查询压力:
groups:
- name: recording_rules
rules:
- record: cpu_utilization
expr: 100 - (avg by (hostname)(rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100
4. 系统参数调优
根据实际情况调整以下参数:
- 增加
-memory.allowedPercent
提高内存分配比例 - 调整
-search.maxQueryDuration
延长查询超时时间 - 在反向代理层(如Nginx)增加超时设置
最佳实践建议
- 分片查询:按服务器分组或地域分片执行查询
- 分层监控:建立多级监控体系,先汇总后详细
- 资源规划:根据时间序列数量预估所需内存
- 定期优化:随着基础设施增长持续调整监控策略
总结
在大规模环境中使用VictoriaMetrics监控CPU利用率时,需要特别注意查询设计和系统配置。通过合理设置步长、优化告警规则、使用预计算和系统调优等手段,可以有效地解决内存不足和查询超时问题。关键在于理解VictoriaMetrics的内存计算机制,并根据实际环境特点进行针对性优化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
515
45

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K

React Native鸿蒙化仓库
C++
194
279