VictoriaMetrics中大规模CPU利用率监控的优化实践
2025-05-16 22:15:00作者:凤尚柏Louis
问题背景
在超大规模基础设施环境中(超过10万台服务器),监控CPU利用率是一项极具挑战性的任务。使用VictoriaMetrics时,用户遇到了查询执行失败的问题,主要原因是内存不足和查询超时。本文将深入分析问题原因,并提供系统化的解决方案。
错误分析
当执行CPU利用率查询时,系统报出两类典型错误:
- 内存不足错误:查询需要处理约1.7GB内存,但vmselect仅分配了约1.1GB内存
- 超大规模查询错误:处理1417040个时间序列时,需要约35.5GB内存,但可用内存仅4.5GB
这些错误表明,原始查询设计无法适应大规模基础设施的监控需求。
根本原因
内存计算机制
VictoriaMetrics使用特定算法计算查询所需内存:
时间序列点数 = 1 + (结束时间 - 开始时间) / 步长间隔
总数据点数 = 时间序列数量 × 每序列点数
固定开销 = 时间序列数量 × 1000
数据点内存 = 总数据点数 × 16字节
总内存需求 = 固定开销 + 数据点内存
问题查询分析
原始查询存在几个关键问题:
- 使用了嵌套的子查询结构
- 默认步长(15秒)过小,导致数据点数量爆炸式增长
- 没有考虑大规模时间序列的内存占用特性
解决方案
1. 调整查询步长
通过增加查询步长可以显著降低内存需求。计算示例如下:
| 步长(秒) | 内存需求(GB) | 是否可行 |
|---|---|---|
| 15 | 35.5 | 不可行 |
| 30 | 18.5 | 不可行 |
| 60 | 9.9 | 可能 |
| 120 | 5.7 | 可行 |
| 180 | 4.3 | 可行 |
实施建议:在Grafana查询或vmalert配置中将步长设置为180秒。
2. 优化告警规则配置
对于告警规则,可以在vmalert的group配置中设置步长参数:
groups:
- name: cpu-alerts
interval: 3m
params:
step: ["180s"]
3. 使用记录规则预计算
建立预计算规则可以减轻实时查询压力:
groups:
- name: recording_rules
rules:
- record: cpu_utilization
expr: 100 - (avg by (hostname)(rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100
4. 系统参数调优
根据实际情况调整以下参数:
- 增加
-memory.allowedPercent提高内存分配比例 - 调整
-search.maxQueryDuration延长查询超时时间 - 在反向代理层(如Nginx)增加超时设置
最佳实践建议
- 分片查询:按服务器分组或地域分片执行查询
- 分层监控:建立多级监控体系,先汇总后详细
- 资源规划:根据时间序列数量预估所需内存
- 定期优化:随着基础设施增长持续调整监控策略
总结
在大规模环境中使用VictoriaMetrics监控CPU利用率时,需要特别注意查询设计和系统配置。通过合理设置步长、优化告警规则、使用预计算和系统调优等手段,可以有效地解决内存不足和查询超时问题。关键在于理解VictoriaMetrics的内存计算机制,并根据实际环境特点进行针对性优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1