Barman备份工具中增量备份的原理与实践
增量备份的基本原理
Barman作为PostgreSQL的专业备份工具,提供了两种主要的备份方式:rsync方式和postgres方式。其中rsync方式支持增量备份功能,这是通过Linux系统的硬链接(hard link)机制实现的。
当使用backup_method = rsync和reuse_backup = link配置时,Barman会利用硬链接来创建文件级别的增量备份。首次备份会完整复制所有数据文件,后续备份则只复制自上次备份后发生变化的文件,未变化的文件则通过硬链接指向之前的备份文件。
如何识别备份类型
通过barman list-backup命令列出的备份信息中,显示的"Size"字段表示恢复该备份所需的所有文件总大小,而不是实际占用的磁盘空间。要准确了解每个备份的实际增量大小,需要使用barman show-backup命令。
在show-backup的输出中,"Disk usage"表示备份的总大小,"Incremental size"则显示该备份实际新增的数据量。例如,一个显示"Incremental size: 5.1 MiB (-80.33%)"的备份,表示该备份实际新增了5.1MB数据,相比完整备份节省了80.33%的空间。
增量备份的百分比计算
增量备份的百分比计算是基于字节级别的比较,公式为:
(增量大小/总大小) - 1
负号表示相比完整备份节省的空间比例。由于显示时进行了单位转换和四舍五入,可能与精确计算有微小差异。
备份策略建议
-
无需手动创建完整备份:Barman会自动管理备份链,首次备份即为完整备份,后续备份自动采用增量方式。
-
备份命令使用:
- 常规增量备份:
barman backup pg - 强制完整备份:
barman backup --reuse-backup=off pg
- 常规增量备份:
-
存储空间管理:删除旧备份时,Barman会自动维护文件引用计数,当某文件不再被任何备份引用时才会真正删除。
压缩与增量备份的选择
Barman目前的设计中,压缩功能(backup_compression)仅在使用backup_method = postgres时可用。因此用户需要在以下两种方案中选择:
- rsync方式:支持增量备份但不支持压缩,适合磁盘空间充足的环境
- postgres方式:支持压缩但不支持增量备份,适合需要节省存储空间的场景
常见问题解决
WAL归档与增量备份:WAL归档方式(流式或归档命令)与增量备份机制是独立的。即使使用流式WAL归档(streaming_archiver = on),rsync方式的增量备份仍应正常工作。若遇到问题,建议检查:
- 配置文件是否正确设置了
backup_method = rsync和reuse_backup = link - 文件系统是否支持硬链接
- 备份目录是否有足够的权限
通过理解这些原理和最佳实践,用户可以更有效地利用Barman的增量备份功能,在备份效率和存储成本之间取得平衡。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00