Classiq量子计算平台0.65.1版本发布:优化量子变量命名与执行性能
项目简介
Classiq是一款领先的量子计算开发平台,它通过高级抽象简化了量子算法的设计与实现过程。该平台包含Python SDK和集成开发环境(IDE),支持从高级建模到实际量子硬件执行的完整工作流。
版本核心更新
1. 量子变量自动命名机制
在0.65.1版本中,Classiq对量子变量的创建方式进行了重要改进。现在,当开发者创建本地量子变量时,不再需要显式指定变量名称参数。系统会自动从Python代码上下文中推断出合适的变量名。
技术实现解析:
- 传统方式:
q = QBit("q") - 新方式:
q = QBit()
这一改进显著减少了样板代码,使量子程序编写更加直观。在底层实现上,Classiq通过Python的抽象语法树(AST)分析来捕获变量名,保持了与经典Python编程体验的一致性。
2. 执行性能优化
该版本特别优化了在单个ExecutionSession中执行多个原语操作的性能表现。这一改进对于以下场景尤为有益:
- 量子近似优化算法(QAOA)的多轮执行
- 需要连续执行多个量子原语的复杂算法
- 参数化量子电路的批量评估
性能提升主要来自于会话内部的状态管理和资源调度的优化,减少了重复初始化和中间转换的开销。
重要变更与迁移指南
整数准备函数的废弃
Classiq 0.65.1版本正式将prepare_int和inplace_prepare_int函数标记为废弃状态。这是平台向更统一、更Pythonic的语法风格演进的一部分。
迁移建议:
- 旧代码:
prepare_int(5, my_qnum) - 新代码:
my_qnum |= 5
新的数值赋值语法不仅更简洁,而且与Python的运算符重载机制保持一致,提高了代码的可读性和一致性。这种赋值操作在量子计算中实际上实现的是将经典数值编码到量子寄存器中的状态准备过程。
技术影响与最佳实践
-
变量命名策略:
- 对于简单场景,推荐使用自动命名
- 复杂场景或需要明确语义时,仍可显式指定名称
- 注意避免在循环或函数中重复使用相同变量名导致的混淆
-
性能敏感型应用:
- 将相关量子操作组织在同一个
ExecutionSession中 - 考虑使用批处理方式执行参数化电路
- 对于QAOA等算法,利用优化后的多原语执行能力
- 将相关量子操作组织在同一个
-
代码现代化改造:
- 逐步替换所有
prepare_int调用 - 熟悉新的数值赋值语义,特别是其量子态准备的含义
- 注意赋值操作在不同量子变量类型上的行为差异
- 逐步替换所有
总结
Classiq 0.65.1版本通过语法简化和性能优化,进一步提升了量子编程的开发体验。自动变量命名减少了样板代码,执行引擎的改进则提升了算法开发效率。同时,平台持续演进其API设计,引导开发者采用更现代、更一致的编程模式。这些变化体现了Classiq在保持强大量子计算能力的同时,不断优化开发者体验的设计理念。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00