Open-Sora项目中处理超长序列的内存优化技术解析
2025-05-08 14:53:25作者:齐冠琰
在深度学习领域,处理超长序列一直是一个具有挑战性的问题,特别是在使用Transformer架构时。本文将以Open-Sora项目为例,深入分析在处理约20万长度的超长序列时遇到的内存溢出(OOM)问题及其解决方案。
背景与问题本质
在Open-Sora项目中,当处理序列长度达到约20万时,系统会尝试分配高达720GB的内存空间。这一现象源于expand_mask_4d函数在处理注意力掩码(attention mask)时的内存分配机制。
注意力机制是Transformer架构的核心组件,它需要为每个token计算与其他所有token的关联程度。当序列长度为N时,标准的注意力机制需要构建一个N×N的矩阵,这导致内存消耗呈平方级增长。
技术细节分析
expand_mask_4d函数的主要职责是将2D的注意力掩码扩展为4D格式,以适应多头注意力机制的需求。对于超长序列,这种扩展操作会带来巨大的内存开销:
-
内存计算:假设序列长度L=200,000,批大小B=1,头数H=8,数据类型为float32(4字节),则完整注意力矩阵的内存需求为: B×H×L×L×4 = 1×8×200,000×200,000×4 ≈ 1.2TB
-
实际观察:项目中报告的实际内存消耗为720GB,可能是由于使用了混合精度训练或其他优化手段,但仍远超出普通GPU的显存容量。
解决方案与优化策略
针对这一问题,Open-Sora项目团队通过代码更新解决了这一瓶颈。虽然没有公开具体实现细节,但我们可以推测可能采用了以下几种常见优化技术:
- 稀疏注意力机制:只计算局部窗口内的token间注意力,而非全连接
- 内存高效注意力:如FlashAttention等算法,通过分块计算减少峰值内存
- 梯度检查点:在反向传播时重新计算部分中间结果,而非存储全部
- 混合精度训练:使用fp16或bf16减少内存占用
- 序列分块处理:将长序列分割为多个较短的块分别处理
工程实践意义
这一优化对于视频生成、长文档处理等需要处理超长序列的应用场景具有重要意义:
- 使模型能够处理更长的上下文信息
- 降低了硬件门槛,使更多研究者能够参与实验
- 提高了训练和推理的效率
- 为后续更长序列的处理奠定了基础
未来发展方向
随着模型处理序列能力的提升,我们可以预见:
- 更复杂的记忆机制将被引入
- 分层注意力结构可能成为标准配置
- 硬件与算法的协同设计将更加重要
- 动态稀疏化技术将得到更广泛应用
Open-Sora项目在这一领域的探索为处理超长序列提供了宝贵经验,其解决方案对于推动相关技术的发展具有积极意义。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869