Open-Sora项目中处理超长序列的内存优化技术解析
2025-05-08 09:37:06作者:齐冠琰
在深度学习领域,处理超长序列一直是一个具有挑战性的问题,特别是在使用Transformer架构时。本文将以Open-Sora项目为例,深入分析在处理约20万长度的超长序列时遇到的内存溢出(OOM)问题及其解决方案。
背景与问题本质
在Open-Sora项目中,当处理序列长度达到约20万时,系统会尝试分配高达720GB的内存空间。这一现象源于expand_mask_4d函数在处理注意力掩码(attention mask)时的内存分配机制。
注意力机制是Transformer架构的核心组件,它需要为每个token计算与其他所有token的关联程度。当序列长度为N时,标准的注意力机制需要构建一个N×N的矩阵,这导致内存消耗呈平方级增长。
技术细节分析
expand_mask_4d函数的主要职责是将2D的注意力掩码扩展为4D格式,以适应多头注意力机制的需求。对于超长序列,这种扩展操作会带来巨大的内存开销:
-
内存计算:假设序列长度L=200,000,批大小B=1,头数H=8,数据类型为float32(4字节),则完整注意力矩阵的内存需求为: B×H×L×L×4 = 1×8×200,000×200,000×4 ≈ 1.2TB
-
实际观察:项目中报告的实际内存消耗为720GB,可能是由于使用了混合精度训练或其他优化手段,但仍远超出普通GPU的显存容量。
解决方案与优化策略
针对这一问题,Open-Sora项目团队通过代码更新解决了这一瓶颈。虽然没有公开具体实现细节,但我们可以推测可能采用了以下几种常见优化技术:
- 稀疏注意力机制:只计算局部窗口内的token间注意力,而非全连接
- 内存高效注意力:如FlashAttention等算法,通过分块计算减少峰值内存
- 梯度检查点:在反向传播时重新计算部分中间结果,而非存储全部
- 混合精度训练:使用fp16或bf16减少内存占用
- 序列分块处理:将长序列分割为多个较短的块分别处理
工程实践意义
这一优化对于视频生成、长文档处理等需要处理超长序列的应用场景具有重要意义:
- 使模型能够处理更长的上下文信息
- 降低了硬件门槛,使更多研究者能够参与实验
- 提高了训练和推理的效率
- 为后续更长序列的处理奠定了基础
未来发展方向
随着模型处理序列能力的提升,我们可以预见:
- 更复杂的记忆机制将被引入
- 分层注意力结构可能成为标准配置
- 硬件与算法的协同设计将更加重要
- 动态稀疏化技术将得到更广泛应用
Open-Sora项目在这一领域的探索为处理超长序列提供了宝贵经验,其解决方案对于推动相关技术的发展具有积极意义。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248