DeepKE项目中的大模型应用与信息抽取技术解析
2025-06-18 22:36:53作者:谭伦延
DeepKE是一个专注于知识抽取的开源项目,近期社区用户反馈了关于triple模块的使用问题,同时也引发了对项目中大模型应用的深入讨论。本文将全面解析DeepKE项目中的技术演进路线,特别是从小模型到大模型的过渡过程,以及当前推荐的信息抽取解决方案。
项目技术演进背景
DeepKE项目早期版本包含了基于传统机器学习方法的三元组抽取(triple)模块,但随着深度学习技术的发展,特别是大语言模型(LLM)的兴起,项目团队已将重心转向基于大模型的知识抽取解决方案。这种技术演进反映了NLP领域从传统方法向预训练大模型过渡的整体趋势。
当前推荐解决方案
项目团队明确建议用户转向使用大模型版本进行知识抽取任务,主要原因包括:
- 性能优势:大模型在信息抽取任务上表现出更强的语义理解能力和泛化性能
- 易用性:大模型方案通常需要更少的数据预处理和特征工程
- 维护支持:项目团队将主要维护精力集中在大模型方案上
核心模型推荐
对于信息抽取任务,项目推荐使用专门优化的KnowLM-13B-IE模型,该模型相比通用大模型具有以下特点:
- 专门针对信息抽取任务进行优化
- 支持指令式知识图谱构建
- 在实体识别和关系抽取任务上表现更优
模型部署与使用
用户需要将下载的模型放置在项目指定目录结构下。建议的部署方式为:
- 在InstructKGC目录下创建models子目录
- 将下载的模型文件置于该目录中
- 按照项目文档配置相关参数
技术迁移建议
对于仍在使用传统triple模块的用户,建议考虑以下迁移路径:
- 评估现有任务是否适合迁移到大模型方案
- 准备适当的示例数据用于few-shot学习
- 逐步将工作流过渡到基于指令的抽取方式
- 利用大模型的零样本或少样本能力降低标注成本
未来发展方向
从项目团队的交流可以看出,DeepKE未来的技术路线将更加注重大模型在知识抽取中的应用,包括:
- 更高效的模型微调方法
- 多模态知识抽取
- 低资源场景下的优化方案
- 与知识图谱构建流程的深度集成
对于刚接触该项目的开发者,建议直接从大模型方案入手,以获得更好的使用体验和技术支持。项目团队也提供了详细的中文教程和社区支持渠道,帮助用户顺利完成技术过渡。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217