Hi-FT/ERD项目模型自定义开发指南
2025-06-19 08:32:49作者:庞眉杨Will
模型组件概述
在Hi-FT/ERD项目中,模型架构被系统地划分为五个核心组件,这种模块化设计使得开发者可以灵活地替换或扩展各个部分:
- 骨干网络(Backbone):通常是全卷积网络(FCN),用于提取图像特征,如ResNet、MobileNet等
- 颈部网络(Neck):连接骨干网络和头部网络的中间组件,如FPN(特征金字塔网络)、PAFPN等
- 头部网络(Head):执行特定任务的组件,如边界框预测、掩码预测等
- ROI提取器(RoI Extractor):从特征图中提取感兴趣区域(RoI)特征的组件,如RoI Align
- 损失函数(Loss):头部网络中用于计算损失的部分,如FocalLoss、L1Loss等
自定义骨干网络开发
1. 创建新骨干网络
以开发MobileNet为例,我们需要创建一个新的Python文件mobilenet.py:
import torch.nn as nn
from mmdet.registry import MODELS
@MODELS.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
# 初始化网络结构
super().__init__()
# 定义网络层
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1)
# 可根据需要添加更多层
def forward(self, x):
# 定义前向传播逻辑
x = self.conv1(x)
# 必须返回一个元组
return (x,)
2. 注册新模块
有两种方式注册新模块:
方法一:直接修改__init__.py文件
from .mobilenet import MobileNet
方法二:通过配置文件动态导入(推荐)
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
3. 在配置中使用新骨干
model = dict(
backbone=dict(
type='MobileNet',
arg1=value1, # 自定义参数
arg2=value2),
...
)
自定义颈部网络开发
颈部网络通常用于特征融合和增强,如构建特征金字塔。
1. 定义颈部网络
以PAFPN为例:
@MODELS.register_module()
class PAFPN(nn.Module):
def __init__(self, in_channels, out_channels, num_outs):
super().__init__()
# 初始化特征金字塔各层
self.lateral_convs = nn.ModuleList()
for in_channel in in_channels:
self.lateral_convs.append(
nn.Conv2d(in_channel, out_channels, 1))
def forward(self, inputs):
# 实现特征融合逻辑
...
2. 注册与使用
注册方式与骨干网络类似,使用时在配置中指定:
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048], # 输入特征图通道数
out_channels=256, # 输出统一通道数
num_outs=5) # 输出特征图数量
自定义头部网络开发
头部网络是任务特定的组件,我们以Double Head R-CNN为例说明开发流程。
1. 定义新的边界框头部
@MODELS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
def __init__(self, num_convs, num_fcs, **kwargs):
super().__init__(**kwargs)
# 初始化卷积分支和全连接分支
self.conv_branch = nn.Sequential(...)
self.fc_branch = nn.Sequential(...)
def forward(self, x_cls, x_reg):
# 实现双分支前向逻辑
conv_feat = self.conv_branch(x_cls)
fc_feat = self.fc_branch(x_reg)
return cls_score, bbox_pred
2. 定义新的ROI头部
@MODELS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
def __init__(self, reg_roi_scale_factor, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
def _bbox_forward(self, x, rois):
# 重写bbox前向传播
bbox_cls_feats = self.extract_feat(x, rois)
bbox_reg_feats = self.extract_feat(
x, rois, scale_factor=self.reg_roi_scale_factor)
return self.bbox_head(bbox_cls_feats, bbox_reg_feats)
3. 完整配置示例
model = dict(
roi_head=dict(
type='DoubleHeadRoIHead',
bbox_head=dict(
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
... # 其他参数
)
)
)
自定义损失函数开发
1. 实现新损失函数
@weighted_loss # 装饰器实现加权
def my_loss(pred, target):
# 实现损失计算逻辑
return torch.abs(pred - target)
@MODELS.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None):
loss = my_loss(pred, target, weight)
return self.loss_weight * loss
2. 使用新损失
在头部配置中指定:
loss_bbox=dict(type='MyLoss', loss_weight=1.0)
开发建议
- 模块化设计:保持每个组件的独立性,便于替换和复用
- 继承现有组件:尽可能继承现有实现,只重写必要部分
- 参数化设计:通过配置文件灵活控制组件行为
- 文档规范:为每个新组件添加清晰的文档说明
- 测试验证:开发后需进行充分测试确保功能正确
通过遵循这些指南,开发者可以高效地为Hi-FT/ERD项目扩展新功能,同时保持代码的整洁性和可维护性。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26