Hi-FT/ERD项目模型自定义开发指南
2025-06-19 18:28:55作者:庞眉杨Will
模型组件概述
在Hi-FT/ERD项目中,模型架构被系统地划分为五个核心组件,这种模块化设计使得开发者可以灵活地替换或扩展各个部分:
- 骨干网络(Backbone):通常是全卷积网络(FCN),用于提取图像特征,如ResNet、MobileNet等
- 颈部网络(Neck):连接骨干网络和头部网络的中间组件,如FPN(特征金字塔网络)、PAFPN等
- 头部网络(Head):执行特定任务的组件,如边界框预测、掩码预测等
- ROI提取器(RoI Extractor):从特征图中提取感兴趣区域(RoI)特征的组件,如RoI Align
- 损失函数(Loss):头部网络中用于计算损失的部分,如FocalLoss、L1Loss等
自定义骨干网络开发
1. 创建新骨干网络
以开发MobileNet为例,我们需要创建一个新的Python文件mobilenet.py:
import torch.nn as nn
from mmdet.registry import MODELS
@MODELS.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
# 初始化网络结构
super().__init__()
# 定义网络层
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1)
# 可根据需要添加更多层
def forward(self, x):
# 定义前向传播逻辑
x = self.conv1(x)
# 必须返回一个元组
return (x,)
2. 注册新模块
有两种方式注册新模块:
方法一:直接修改__init__.py文件
from .mobilenet import MobileNet
方法二:通过配置文件动态导入(推荐)
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
3. 在配置中使用新骨干
model = dict(
backbone=dict(
type='MobileNet',
arg1=value1, # 自定义参数
arg2=value2),
...
)
自定义颈部网络开发
颈部网络通常用于特征融合和增强,如构建特征金字塔。
1. 定义颈部网络
以PAFPN为例:
@MODELS.register_module()
class PAFPN(nn.Module):
def __init__(self, in_channels, out_channels, num_outs):
super().__init__()
# 初始化特征金字塔各层
self.lateral_convs = nn.ModuleList()
for in_channel in in_channels:
self.lateral_convs.append(
nn.Conv2d(in_channel, out_channels, 1))
def forward(self, inputs):
# 实现特征融合逻辑
...
2. 注册与使用
注册方式与骨干网络类似,使用时在配置中指定:
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048], # 输入特征图通道数
out_channels=256, # 输出统一通道数
num_outs=5) # 输出特征图数量
自定义头部网络开发
头部网络是任务特定的组件,我们以Double Head R-CNN为例说明开发流程。
1. 定义新的边界框头部
@MODELS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
def __init__(self, num_convs, num_fcs, **kwargs):
super().__init__(**kwargs)
# 初始化卷积分支和全连接分支
self.conv_branch = nn.Sequential(...)
self.fc_branch = nn.Sequential(...)
def forward(self, x_cls, x_reg):
# 实现双分支前向逻辑
conv_feat = self.conv_branch(x_cls)
fc_feat = self.fc_branch(x_reg)
return cls_score, bbox_pred
2. 定义新的ROI头部
@MODELS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
def __init__(self, reg_roi_scale_factor, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
def _bbox_forward(self, x, rois):
# 重写bbox前向传播
bbox_cls_feats = self.extract_feat(x, rois)
bbox_reg_feats = self.extract_feat(
x, rois, scale_factor=self.reg_roi_scale_factor)
return self.bbox_head(bbox_cls_feats, bbox_reg_feats)
3. 完整配置示例
model = dict(
roi_head=dict(
type='DoubleHeadRoIHead',
bbox_head=dict(
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
... # 其他参数
)
)
)
自定义损失函数开发
1. 实现新损失函数
@weighted_loss # 装饰器实现加权
def my_loss(pred, target):
# 实现损失计算逻辑
return torch.abs(pred - target)
@MODELS.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None):
loss = my_loss(pred, target, weight)
return self.loss_weight * loss
2. 使用新损失
在头部配置中指定:
loss_bbox=dict(type='MyLoss', loss_weight=1.0)
开发建议
- 模块化设计:保持每个组件的独立性,便于替换和复用
- 继承现有组件:尽可能继承现有实现,只重写必要部分
- 参数化设计:通过配置文件灵活控制组件行为
- 文档规范:为每个新组件添加清晰的文档说明
- 测试验证:开发后需进行充分测试确保功能正确
通过遵循这些指南,开发者可以高效地为Hi-FT/ERD项目扩展新功能,同时保持代码的整洁性和可维护性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K