Hi-FT/ERD项目模型自定义开发指南
2025-06-19 10:56:34作者:庞眉杨Will
模型组件概述
在Hi-FT/ERD项目中,模型架构被系统地划分为五个核心组件,这种模块化设计使得开发者可以灵活地替换或扩展各个部分:
- 骨干网络(Backbone):通常是全卷积网络(FCN),用于提取图像特征,如ResNet、MobileNet等
- 颈部网络(Neck):连接骨干网络和头部网络的中间组件,如FPN(特征金字塔网络)、PAFPN等
- 头部网络(Head):执行特定任务的组件,如边界框预测、掩码预测等
- ROI提取器(RoI Extractor):从特征图中提取感兴趣区域(RoI)特征的组件,如RoI Align
- 损失函数(Loss):头部网络中用于计算损失的部分,如FocalLoss、L1Loss等
自定义骨干网络开发
1. 创建新骨干网络
以开发MobileNet为例,我们需要创建一个新的Python文件mobilenet.py
:
import torch.nn as nn
from mmdet.registry import MODELS
@MODELS.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
# 初始化网络结构
super().__init__()
# 定义网络层
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1)
# 可根据需要添加更多层
def forward(self, x):
# 定义前向传播逻辑
x = self.conv1(x)
# 必须返回一个元组
return (x,)
2. 注册新模块
有两种方式注册新模块:
方法一:直接修改__init__.py
文件
from .mobilenet import MobileNet
方法二:通过配置文件动态导入(推荐)
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
3. 在配置中使用新骨干
model = dict(
backbone=dict(
type='MobileNet',
arg1=value1, # 自定义参数
arg2=value2),
...
)
自定义颈部网络开发
颈部网络通常用于特征融合和增强,如构建特征金字塔。
1. 定义颈部网络
以PAFPN为例:
@MODELS.register_module()
class PAFPN(nn.Module):
def __init__(self, in_channels, out_channels, num_outs):
super().__init__()
# 初始化特征金字塔各层
self.lateral_convs = nn.ModuleList()
for in_channel in in_channels:
self.lateral_convs.append(
nn.Conv2d(in_channel, out_channels, 1))
def forward(self, inputs):
# 实现特征融合逻辑
...
2. 注册与使用
注册方式与骨干网络类似,使用时在配置中指定:
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048], # 输入特征图通道数
out_channels=256, # 输出统一通道数
num_outs=5) # 输出特征图数量
自定义头部网络开发
头部网络是任务特定的组件,我们以Double Head R-CNN为例说明开发流程。
1. 定义新的边界框头部
@MODELS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
def __init__(self, num_convs, num_fcs, **kwargs):
super().__init__(**kwargs)
# 初始化卷积分支和全连接分支
self.conv_branch = nn.Sequential(...)
self.fc_branch = nn.Sequential(...)
def forward(self, x_cls, x_reg):
# 实现双分支前向逻辑
conv_feat = self.conv_branch(x_cls)
fc_feat = self.fc_branch(x_reg)
return cls_score, bbox_pred
2. 定义新的ROI头部
@MODELS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
def __init__(self, reg_roi_scale_factor, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
def _bbox_forward(self, x, rois):
# 重写bbox前向传播
bbox_cls_feats = self.extract_feat(x, rois)
bbox_reg_feats = self.extract_feat(
x, rois, scale_factor=self.reg_roi_scale_factor)
return self.bbox_head(bbox_cls_feats, bbox_reg_feats)
3. 完整配置示例
model = dict(
roi_head=dict(
type='DoubleHeadRoIHead',
bbox_head=dict(
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
... # 其他参数
)
)
)
自定义损失函数开发
1. 实现新损失函数
@weighted_loss # 装饰器实现加权
def my_loss(pred, target):
# 实现损失计算逻辑
return torch.abs(pred - target)
@MODELS.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None):
loss = my_loss(pred, target, weight)
return self.loss_weight * loss
2. 使用新损失
在头部配置中指定:
loss_bbox=dict(type='MyLoss', loss_weight=1.0)
开发建议
- 模块化设计:保持每个组件的独立性,便于替换和复用
- 继承现有组件:尽可能继承现有实现,只重写必要部分
- 参数化设计:通过配置文件灵活控制组件行为
- 文档规范:为每个新组件添加清晰的文档说明
- 测试验证:开发后需进行充分测试确保功能正确
通过遵循这些指南,开发者可以高效地为Hi-FT/ERD项目扩展新功能,同时保持代码的整洁性和可维护性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5