ComfyUI-GGUF 在 Apple Silicon 上的 GPU 加速实践
随着 Apple Silicon 芯片的普及,越来越多的开发者希望在 Mac 设备上运行深度学习模型。本文将详细介绍如何在搭载 M 系列芯片的 Mac 设备上成功运行 ComfyUI-GGUF 项目,并实现 GPU 加速。
问题背景
在 Apple Silicon 设备上运行 ComfyUI-GGUF 时,用户可能会遇到一个关键错误:"The operator 'aten::rshift.Tensor' is not currently implemented for the MPS device"。这是由于 PyTorch 对 MPS 后端的支持尚不完全,特别是位运算操作(如右移位运算)尚未实现。
解决方案演进
临时解决方案
早期用户可以通过设置环境变量 PYTORCH_ENABLE_MPS_FALLBACK=1 来让不支持的运算回退到 CPU 执行。虽然这种方法能让程序运行,但性能较差,在 M1 Pro 芯片上处理 512x512 的潜在图像时,每迭代需要约 32 秒。
性能优化方案
有开发者提出将右移位运算替换为整数除法运算的方案:
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) // torch.tensor([1, 16], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
这种方法虽然能在 MPS 上运行,但性能提升有限,特别是对于 Q4_1 等量化模型。
最佳实践方案
目前最推荐的解决方案是安装 PyTorch 的 nightly 版本,该版本已经添加了对 MPS 设备上右移位运算的支持。用户可以通过以下命令升级:
pip install -U torch --pre
性能对比
在实际测试中,使用 M3 Pro 芯片(18GB 内存)运行 fluxunchained-schnell-dev-merge-q4-1.gguf 模型时:
- MPS 原生运行:27 秒/迭代,总时间 133 秒
- CPU 回退运行:100 秒/迭代,总时间 423 秒
可见 MPS 原生支持带来了显著的性能提升,使模型在 Apple Silicon 设备上的实用性大大提高。
实施建议
- 确保使用最新版本的 PyTorch nightly 构建
- 对于性能敏感的应用,优先考虑使用 Q8 等更高精度的量化模型
- 监控 PyTorch 官方更新,以获取更好的 MPS 支持
- 对于复杂模型,合理设置批处理大小以避免内存溢出
随着 PyTorch 对 Apple Silicon 支持的不断完善,我们期待看到更多深度学习应用能够在 Mac 设备上高效运行,为开发者提供更多选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00