ComfyUI-GGUF 在 Apple Silicon 上的 GPU 加速实践
随着 Apple Silicon 芯片的普及,越来越多的开发者希望在 Mac 设备上运行深度学习模型。本文将详细介绍如何在搭载 M 系列芯片的 Mac 设备上成功运行 ComfyUI-GGUF 项目,并实现 GPU 加速。
问题背景
在 Apple Silicon 设备上运行 ComfyUI-GGUF 时,用户可能会遇到一个关键错误:"The operator 'aten::rshift.Tensor' is not currently implemented for the MPS device"。这是由于 PyTorch 对 MPS 后端的支持尚不完全,特别是位运算操作(如右移位运算)尚未实现。
解决方案演进
临时解决方案
早期用户可以通过设置环境变量 PYTORCH_ENABLE_MPS_FALLBACK=1
来让不支持的运算回退到 CPU 执行。虽然这种方法能让程序运行,但性能较差,在 M1 Pro 芯片上处理 512x512 的潜在图像时,每迭代需要约 32 秒。
性能优化方案
有开发者提出将右移位运算替换为整数除法运算的方案:
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) // torch.tensor([1, 16], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
这种方法虽然能在 MPS 上运行,但性能提升有限,特别是对于 Q4_1 等量化模型。
最佳实践方案
目前最推荐的解决方案是安装 PyTorch 的 nightly 版本,该版本已经添加了对 MPS 设备上右移位运算的支持。用户可以通过以下命令升级:
pip install -U torch --pre
性能对比
在实际测试中,使用 M3 Pro 芯片(18GB 内存)运行 fluxunchained-schnell-dev-merge-q4-1.gguf 模型时:
- MPS 原生运行:27 秒/迭代,总时间 133 秒
- CPU 回退运行:100 秒/迭代,总时间 423 秒
可见 MPS 原生支持带来了显著的性能提升,使模型在 Apple Silicon 设备上的实用性大大提高。
实施建议
- 确保使用最新版本的 PyTorch nightly 构建
- 对于性能敏感的应用,优先考虑使用 Q8 等更高精度的量化模型
- 监控 PyTorch 官方更新,以获取更好的 MPS 支持
- 对于复杂模型,合理设置批处理大小以避免内存溢出
随着 PyTorch 对 Apple Silicon 支持的不断完善,我们期待看到更多深度学习应用能够在 Mac 设备上高效运行,为开发者提供更多选择。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









