ComfyUI-GGUF 在 Apple Silicon 上的 GPU 加速实践
随着 Apple Silicon 芯片的普及,越来越多的开发者希望在 Mac 设备上运行深度学习模型。本文将详细介绍如何在搭载 M 系列芯片的 Mac 设备上成功运行 ComfyUI-GGUF 项目,并实现 GPU 加速。
问题背景
在 Apple Silicon 设备上运行 ComfyUI-GGUF 时,用户可能会遇到一个关键错误:"The operator 'aten::rshift.Tensor' is not currently implemented for the MPS device"。这是由于 PyTorch 对 MPS 后端的支持尚不完全,特别是位运算操作(如右移位运算)尚未实现。
解决方案演进
临时解决方案
早期用户可以通过设置环境变量 PYTORCH_ENABLE_MPS_FALLBACK=1 来让不支持的运算回退到 CPU 执行。虽然这种方法能让程序运行,但性能较差,在 M1 Pro 芯片上处理 512x512 的潜在图像时,每迭代需要约 32 秒。
性能优化方案
有开发者提出将右移位运算替换为整数除法运算的方案:
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) // torch.tensor([1, 16], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
这种方法虽然能在 MPS 上运行,但性能提升有限,特别是对于 Q4_1 等量化模型。
最佳实践方案
目前最推荐的解决方案是安装 PyTorch 的 nightly 版本,该版本已经添加了对 MPS 设备上右移位运算的支持。用户可以通过以下命令升级:
pip install -U torch --pre
性能对比
在实际测试中,使用 M3 Pro 芯片(18GB 内存)运行 fluxunchained-schnell-dev-merge-q4-1.gguf 模型时:
- MPS 原生运行:27 秒/迭代,总时间 133 秒
- CPU 回退运行:100 秒/迭代,总时间 423 秒
可见 MPS 原生支持带来了显著的性能提升,使模型在 Apple Silicon 设备上的实用性大大提高。
实施建议
- 确保使用最新版本的 PyTorch nightly 构建
- 对于性能敏感的应用,优先考虑使用 Q8 等更高精度的量化模型
- 监控 PyTorch 官方更新,以获取更好的 MPS 支持
- 对于复杂模型,合理设置批处理大小以避免内存溢出
随着 PyTorch 对 Apple Silicon 支持的不断完善,我们期待看到更多深度学习应用能够在 Mac 设备上高效运行,为开发者提供更多选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00