首页
/ ComfyUI-GGUF 在 Apple Silicon 上的 GPU 加速实践

ComfyUI-GGUF 在 Apple Silicon 上的 GPU 加速实践

2025-07-07 13:25:32作者:邵娇湘

随着 Apple Silicon 芯片的普及,越来越多的开发者希望在 Mac 设备上运行深度学习模型。本文将详细介绍如何在搭载 M 系列芯片的 Mac 设备上成功运行 ComfyUI-GGUF 项目,并实现 GPU 加速。

问题背景

在 Apple Silicon 设备上运行 ComfyUI-GGUF 时,用户可能会遇到一个关键错误:"The operator 'aten::rshift.Tensor' is not currently implemented for the MPS device"。这是由于 PyTorch 对 MPS 后端的支持尚不完全,特别是位运算操作(如右移位运算)尚未实现。

解决方案演进

临时解决方案

早期用户可以通过设置环境变量 PYTORCH_ENABLE_MPS_FALLBACK=1 来让不支持的运算回退到 CPU 执行。虽然这种方法能让程序运行,但性能较差,在 M1 Pro 芯片上处理 512x512 的潜在图像时,每迭代需要约 32 秒。

性能优化方案

有开发者提出将右移位运算替换为整数除法运算的方案:

qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) // torch.tensor([1, 16], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))

这种方法虽然能在 MPS 上运行,但性能提升有限,特别是对于 Q4_1 等量化模型。

最佳实践方案

目前最推荐的解决方案是安装 PyTorch 的 nightly 版本,该版本已经添加了对 MPS 设备上右移位运算的支持。用户可以通过以下命令升级:

pip install -U torch --pre

性能对比

在实际测试中,使用 M3 Pro 芯片(18GB 内存)运行 fluxunchained-schnell-dev-merge-q4-1.gguf 模型时:

  • MPS 原生运行:27 秒/迭代,总时间 133 秒
  • CPU 回退运行:100 秒/迭代,总时间 423 秒

可见 MPS 原生支持带来了显著的性能提升,使模型在 Apple Silicon 设备上的实用性大大提高。

实施建议

  1. 确保使用最新版本的 PyTorch nightly 构建
  2. 对于性能敏感的应用,优先考虑使用 Q8 等更高精度的量化模型
  3. 监控 PyTorch 官方更新,以获取更好的 MPS 支持
  4. 对于复杂模型,合理设置批处理大小以避免内存溢出

随着 PyTorch 对 Apple Silicon 支持的不断完善,我们期待看到更多深度学习应用能够在 Mac 设备上高效运行,为开发者提供更多选择。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
138
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
187
266
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
893
529
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
371
387
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377