JAX v0.5.0发布:随机数生成器改进与重要变更解析
JAX是由Google开发的一个高性能数值计算库,它结合了NumPy的易用性与自动微分、硬件加速等高级功能,特别适合机器学习研究和科学计算。JAX通过XLA编译器将Python/NumPy代码转换为高效的机器代码,可以在CPU、GPU和TPU上运行。
版本变更概述
JAX v0.5.0是一个重要的版本更新,采用了基于工作量(effort-based)的版本控制方案。本次更新包含了一些破坏性变更,特别是随机数生成器(PRNG)的语义变化,可能需要用户更新代码。
主要变更内容
1. 随机数生成器改进
本次版本默认启用了jax_threefry_partitionable特性,这是对JAX随机数生成系统的重要改进。Threefry是一种基于计数器的随机数生成算法,新版本使其支持更好的分区能力,这对于分布式计算场景特别有价值。
2. 平台支持调整
JAX v0.5.0停止了对Mac x86架构的支持,仅保留对Mac ARM架构的支持。这一决策基于两个主要原因:
- Mac x86构建存在多个测试失败和崩溃问题
- Mac x86硬件已停产,开发者难以获取设备进行问题修复
如果社区愿意帮助维护Mac x86平台,特别是确保JAX测试套件在该平台上完全通过,团队会考虑重新支持该架构。
3. 依赖版本要求提升
- 最低NumPy版本要求提升至1.25,该版本将支持到2025年6月
- 最低SciPy版本要求提升至1.11,同样支持到2025年6月
功能改进
1. FFT功能增强
jax.numpy.fft模块中的多维FFT函数(包括fftn、rfftn、ifftn和irfftn)现在支持超过3维的变换,突破了之前的限制。
2. 张量运算优化
jax.numpy.einsum函数的默认优化参数从'optimal'改为'auto',这避免了在多参数情况下出现指数级增长的计算时间。
3. 线性代数改进
jax.numpy.linalg.solve不再支持右侧参数为批量1D数组的情况。如需保留原有行为,可以使用solve(a, b[..., None]).squeeze(-1)。
新特性
1. FFI用户自定义状态支持
新增了jax.ffi.register_ffi_type_id函数,允许用户在FFI(外部函数接口)中定义自己的状态类型。
2. AOT调试信息支持
AOT(提前编译)降低级的.as_text()方法现在支持debug_info选项,可以在输出中包含调试信息,如源代码位置等。
废弃和移除的功能
1. 废弃的功能
jax.interpreters.xla模块中的abstractify和pytype_aval_mappings已被废弃,相应功能已移至jax.core模块jax.scipy.special.lpmn和jax.scipy.special.lpmn_values函数已被废弃,这与SciPy v1.15.0的变更保持一致jax.extend.ffi子模块已移至jax.ffi,原路径将被废弃
2. 移除的功能
jax_enable_memories标志已被移除,其功能现在默认启用jax.lib.xla_client中的Device和XlaRuntimeError已被移除,应使用jax.Device和jax.errors.JaxRuntimeError替代jax.experimental.array_api模块已被移除,其功能已直接集成到jax.numpy中
升级建议
对于使用JAX进行科学计算或机器学习开发的用户,升级到v0.5.0时需要注意以下几点:
- 检查随机数生成相关的代码,确保与新的PRNG语义兼容
- 更新依赖的NumPy和SciPy版本至最低要求以上
- 如果使用了被废弃或移除的API,需要按照文档指引进行迁移
- Mac x86用户需要考虑迁移到ARM架构或等待社区支持恢复
JAX团队持续致力于提供高性能的数值计算解决方案,本次更新在保持核心功能稳定的同时,对底层实现进行了重要优化,为未来的性能提升和功能扩展奠定了基础。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00