使用ESM3模型处理蛋白质序列:获取嵌入表示与PDB结构预测
2025-07-06 05:29:00作者:宣聪麟
概述
ESM3是一个强大的蛋白质语言模型,能够对蛋白质序列进行多种处理,包括生成序列的嵌入表示(embedding)和预测蛋白质的三维结构(PDB文件)。本文将详细介绍如何使用ESM3模型处理蛋白质FASTA序列,获取这些重要的生物信息学数据。
准备工作
在开始之前,需要确保已经安装了最新版本的ESM3模型及其依赖项。典型的蛋白质序列处理流程包括以下几个步骤:
- 加载预训练的ESM3模型
- 准备蛋白质FASTA序列
- 生成序列嵌入表示
- 预测蛋白质三维结构
核心功能实现
生成蛋白质序列嵌入
蛋白质序列嵌入是将氨基酸序列转换为高维向量表示的过程,这些向量能够捕捉序列中的结构和功能信息。ESM3提供了高效的方法来生成这些嵌入:
from esm import pretrained
# 加载预训练模型
model, alphabet = pretrained.load_model_and_alphabet("esm3_t12_35M_UR50D")
# 准备序列数据
sequence = "MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM"
# 生成嵌入表示
results = model.infer_pdb(sequence)
embeddings = results["representations"] # 获取各层的嵌入表示
预测蛋白质三维结构
ESM3不仅可以生成序列嵌入,还能预测蛋白质的三维结构,输出标准的PDB格式文件:
# 使用forward_and_sample方法预测结构
structure = model.forward_and_sample(
sequence,
return_per_residue_embedding=True, # 返回每个残基的嵌入
generate_pdb=True # 生成PDB文件
)
# 保存PDB文件
with open("protein_structure.pdb", "w") as f:
f.write(structure["pdb_output"])
高级应用
批量处理多个序列
对于需要处理大量蛋白质序列的情况,可以优化代码以提高效率:
from esm import FastaBatchedDataset
# 准备批量数据
dataset = FastaBatchedDataset.from_file("proteins.fasta")
batches = dataset.get_batch_indices(4096, extra_toks_per_seq=1)
# 批量处理
for batch_idx in batches:
batch_seqs = [dataset[i][1] for i in batch_idx]
results = model.infer_pdb(batch_seqs)
# 处理结果...
嵌入表示分析
生成的嵌入表示可以用于各种下游任务,如:
- 蛋白质功能预测
- 蛋白质-蛋白质相互作用预测
- 蛋白质分类
- 突变效应预测
# 分析嵌入表示示例
import numpy as np
# 获取最后一层的嵌入
last_layer_emb = embeddings[33] # ESM3通常有33层
# 计算序列全局表示
global_embedding = np.mean(last_layer_emb, axis=0)
# 可用于机器学习模型的输入
print(f"Global embedding shape: {global_embedding.shape}")
注意事项
- 计算资源:ESM3模型较大,特别是完整版模型,需要足够的GPU内存
- 序列长度:超长序列可能需要分块处理
- 结果解释:PDB预测结果是基于统计的预测,不是实验确定的真实结构
- 模型选择:根据任务需求选择合适的ESM3模型版本
结论
ESM3为蛋白质序列分析提供了强大的工具,通过简单的API调用即可获得高质量的嵌入表示和结构预测。这些功能为生物信息学研究和新药开发等领域提供了重要支持。随着模型的不断更新,其预测准确性和功能还将继续提升。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355