使用ESM3模型处理蛋白质序列:获取嵌入表示与PDB结构预测
2025-07-06 05:29:00作者:宣聪麟
概述
ESM3是一个强大的蛋白质语言模型,能够对蛋白质序列进行多种处理,包括生成序列的嵌入表示(embedding)和预测蛋白质的三维结构(PDB文件)。本文将详细介绍如何使用ESM3模型处理蛋白质FASTA序列,获取这些重要的生物信息学数据。
准备工作
在开始之前,需要确保已经安装了最新版本的ESM3模型及其依赖项。典型的蛋白质序列处理流程包括以下几个步骤:
- 加载预训练的ESM3模型
- 准备蛋白质FASTA序列
- 生成序列嵌入表示
- 预测蛋白质三维结构
核心功能实现
生成蛋白质序列嵌入
蛋白质序列嵌入是将氨基酸序列转换为高维向量表示的过程,这些向量能够捕捉序列中的结构和功能信息。ESM3提供了高效的方法来生成这些嵌入:
from esm import pretrained
# 加载预训练模型
model, alphabet = pretrained.load_model_and_alphabet("esm3_t12_35M_UR50D")
# 准备序列数据
sequence = "MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM"
# 生成嵌入表示
results = model.infer_pdb(sequence)
embeddings = results["representations"] # 获取各层的嵌入表示
预测蛋白质三维结构
ESM3不仅可以生成序列嵌入,还能预测蛋白质的三维结构,输出标准的PDB格式文件:
# 使用forward_and_sample方法预测结构
structure = model.forward_and_sample(
sequence,
return_per_residue_embedding=True, # 返回每个残基的嵌入
generate_pdb=True # 生成PDB文件
)
# 保存PDB文件
with open("protein_structure.pdb", "w") as f:
f.write(structure["pdb_output"])
高级应用
批量处理多个序列
对于需要处理大量蛋白质序列的情况,可以优化代码以提高效率:
from esm import FastaBatchedDataset
# 准备批量数据
dataset = FastaBatchedDataset.from_file("proteins.fasta")
batches = dataset.get_batch_indices(4096, extra_toks_per_seq=1)
# 批量处理
for batch_idx in batches:
batch_seqs = [dataset[i][1] for i in batch_idx]
results = model.infer_pdb(batch_seqs)
# 处理结果...
嵌入表示分析
生成的嵌入表示可以用于各种下游任务,如:
- 蛋白质功能预测
- 蛋白质-蛋白质相互作用预测
- 蛋白质分类
- 突变效应预测
# 分析嵌入表示示例
import numpy as np
# 获取最后一层的嵌入
last_layer_emb = embeddings[33] # ESM3通常有33层
# 计算序列全局表示
global_embedding = np.mean(last_layer_emb, axis=0)
# 可用于机器学习模型的输入
print(f"Global embedding shape: {global_embedding.shape}")
注意事项
- 计算资源:ESM3模型较大,特别是完整版模型,需要足够的GPU内存
- 序列长度:超长序列可能需要分块处理
- 结果解释:PDB预测结果是基于统计的预测,不是实验确定的真实结构
- 模型选择:根据任务需求选择合适的ESM3模型版本
结论
ESM3为蛋白质序列分析提供了强大的工具,通过简单的API调用即可获得高质量的嵌入表示和结构预测。这些功能为生物信息学研究和新药开发等领域提供了重要支持。随着模型的不断更新,其预测准确性和功能还将继续提升。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759