使用ESM3模型处理蛋白质序列:获取嵌入表示与PDB结构预测
2025-07-06 16:38:14作者:宣聪麟
概述
ESM3是一个强大的蛋白质语言模型,能够对蛋白质序列进行多种处理,包括生成序列的嵌入表示(embedding)和预测蛋白质的三维结构(PDB文件)。本文将详细介绍如何使用ESM3模型处理蛋白质FASTA序列,获取这些重要的生物信息学数据。
准备工作
在开始之前,需要确保已经安装了最新版本的ESM3模型及其依赖项。典型的蛋白质序列处理流程包括以下几个步骤:
- 加载预训练的ESM3模型
 - 准备蛋白质FASTA序列
 - 生成序列嵌入表示
 - 预测蛋白质三维结构
 
核心功能实现
生成蛋白质序列嵌入
蛋白质序列嵌入是将氨基酸序列转换为高维向量表示的过程,这些向量能够捕捉序列中的结构和功能信息。ESM3提供了高效的方法来生成这些嵌入:
from esm import pretrained
# 加载预训练模型
model, alphabet = pretrained.load_model_and_alphabet("esm3_t12_35M_UR50D")
# 准备序列数据
sequence = "MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM"
# 生成嵌入表示
results = model.infer_pdb(sequence)
embeddings = results["representations"]  # 获取各层的嵌入表示
预测蛋白质三维结构
ESM3不仅可以生成序列嵌入,还能预测蛋白质的三维结构,输出标准的PDB格式文件:
# 使用forward_and_sample方法预测结构
structure = model.forward_and_sample(
    sequence,
    return_per_residue_embedding=True,  # 返回每个残基的嵌入
    generate_pdb=True                   # 生成PDB文件
)
# 保存PDB文件
with open("protein_structure.pdb", "w") as f:
    f.write(structure["pdb_output"])
高级应用
批量处理多个序列
对于需要处理大量蛋白质序列的情况,可以优化代码以提高效率:
from esm import FastaBatchedDataset
# 准备批量数据
dataset = FastaBatchedDataset.from_file("proteins.fasta")
batches = dataset.get_batch_indices(4096, extra_toks_per_seq=1)
# 批量处理
for batch_idx in batches:
    batch_seqs = [dataset[i][1] for i in batch_idx]
    results = model.infer_pdb(batch_seqs)
    # 处理结果...
嵌入表示分析
生成的嵌入表示可以用于各种下游任务,如:
- 蛋白质功能预测
 - 蛋白质-蛋白质相互作用预测
 - 蛋白质分类
 - 突变效应预测
 
# 分析嵌入表示示例
import numpy as np
# 获取最后一层的嵌入
last_layer_emb = embeddings[33]  # ESM3通常有33层
# 计算序列全局表示
global_embedding = np.mean(last_layer_emb, axis=0)
# 可用于机器学习模型的输入
print(f"Global embedding shape: {global_embedding.shape}")
注意事项
- 计算资源:ESM3模型较大,特别是完整版模型,需要足够的GPU内存
 - 序列长度:超长序列可能需要分块处理
 - 结果解释:PDB预测结果是基于统计的预测,不是实验确定的真实结构
 - 模型选择:根据任务需求选择合适的ESM3模型版本
 
结论
ESM3为蛋白质序列分析提供了强大的工具,通过简单的API调用即可获得高质量的嵌入表示和结构预测。这些功能为生物信息学研究和新药开发等领域提供了重要支持。随着模型的不断更新,其预测准确性和功能还将继续提升。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447