coverage.py 7.8.0版本发布:Python代码覆盖率工具的重要更新
项目简介
coverage.py是Python生态系统中广泛使用的代码覆盖率测量工具,它能够帮助开发者了解测试用例对代码的覆盖程度。通过统计测试执行过程中哪些代码行被执行、哪些被跳过,coverage.py为测试质量提供了量化指标,是提升代码质量的重要工具。
7.8.0版本核心更新
新增source_dirs配置项
本次更新引入了一个重要的新配置项source_dirs
,它与现有的source_pkgs
配置项形成对称设计。这个新配置项解决了长期存在的配置问题:
-
更安全的目录指定:相比原有的
source
配置项,source_dirs
会在指定目录不存在时提供明确的错误提示,避免了因拼写错误或路径错误导致的静默失败。 -
配置一致性:与
source_pkgs
形成配对,使得包(package)和目录(directory)的配置方式更加统一,提高了配置文件的易读性和一致性。 -
向后兼容:原有的
source
配置项仍然可用,但新项目推荐使用source_dirs
以获得更好的错误处理。
PYTHONSAFEPATH环境变量支持
针对Python 3.11引入的新环境变量PYTHONSAFEPATH,7.8.0版本提供了完整的支持:
-
安全路径处理:PYTHONSAFEPATH是Python 3.11引入的安全特性,用于防止不受信任的代码通过修改sys.path进行潜在恶意操作。coverage.py现在能够正确处理这一环境变量设置。
-
Windows平台注意事项:在Windows平台上使用
coverage
命令时可能存在一个小细节问题。开发者可以改用python -m coverage
命令来获得完全准确的行为模拟。
技术深度解析
源代码目录配置的演进
coverage.py历史上提供了多种方式来指定源代码目录:
-
传统source配置:简单但缺乏错误检查,容易因配置错误导致覆盖率报告不准确。
-
source_pkgs配置:针对Python包的配置方式,明确且结构化。
-
新增source_dirs配置:结合了明确性错误检查和简单配置的优点,代表了配置方式的最佳实践。
安全路径处理机制
Python 3.11引入的PYTHONSAFEPATH代表了Python运行时环境安全性的提升。coverage.py对此的支持体现在:
-
环境变量感知:能够正确识别和处理PYTHONSAFEPATH的设置。
-
路径解析安全:在覆盖率测量过程中保持与Python解释器一致的路径安全策略。
-
跨平台一致性:确保在不同操作系统上提供一致的安全行为。
升级建议
对于现有项目:
-
配置迁移:建议将配置文件中的
source
配置逐步迁移到source_dirs
,以获得更好的错误检查。 -
测试验证:升级后应全面运行测试套件,验证覆盖率数据收集是否正常。
-
CI/CD调整:如果CI环境中使用Python 3.11及以上版本,确保PYTHONSAFEPATH设置不会影响覆盖率测量。
总结
coverage.py 7.8.0版本通过引入source_dirs
配置和支持PYTHONSAFEPATH环境变量,进一步提升了工具的可靠性和安全性。这些改进使得开发者能够更准确地测量代码覆盖率,同时保持与现代Python版本的安全特性兼容。作为Python测试工具链中的重要一环,coverage.py的持续演进有助于提升整个Python生态的代码质量保障能力。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









