coverage.py 7.8.0版本发布:Python代码覆盖率工具的重要更新
项目简介
coverage.py是Python生态系统中广泛使用的代码覆盖率测量工具,它能够帮助开发者了解测试用例对代码的覆盖程度。通过统计测试执行过程中哪些代码行被执行、哪些被跳过,coverage.py为测试质量提供了量化指标,是提升代码质量的重要工具。
7.8.0版本核心更新
新增source_dirs配置项
本次更新引入了一个重要的新配置项source_dirs,它与现有的source_pkgs配置项形成对称设计。这个新配置项解决了长期存在的配置问题:
-
更安全的目录指定:相比原有的
source配置项,source_dirs会在指定目录不存在时提供明确的错误提示,避免了因拼写错误或路径错误导致的静默失败。 -
配置一致性:与
source_pkgs形成配对,使得包(package)和目录(directory)的配置方式更加统一,提高了配置文件的易读性和一致性。 -
向后兼容:原有的
source配置项仍然可用,但新项目推荐使用source_dirs以获得更好的错误处理。
PYTHONSAFEPATH环境变量支持
针对Python 3.11引入的新环境变量PYTHONSAFEPATH,7.8.0版本提供了完整的支持:
-
安全路径处理:PYTHONSAFEPATH是Python 3.11引入的安全特性,用于防止不受信任的代码通过修改sys.path进行潜在恶意操作。coverage.py现在能够正确处理这一环境变量设置。
-
Windows平台注意事项:在Windows平台上使用
coverage命令时可能存在一个小细节问题。开发者可以改用python -m coverage命令来获得完全准确的行为模拟。
技术深度解析
源代码目录配置的演进
coverage.py历史上提供了多种方式来指定源代码目录:
-
传统source配置:简单但缺乏错误检查,容易因配置错误导致覆盖率报告不准确。
-
source_pkgs配置:针对Python包的配置方式,明确且结构化。
-
新增source_dirs配置:结合了明确性错误检查和简单配置的优点,代表了配置方式的最佳实践。
安全路径处理机制
Python 3.11引入的PYTHONSAFEPATH代表了Python运行时环境安全性的提升。coverage.py对此的支持体现在:
-
环境变量感知:能够正确识别和处理PYTHONSAFEPATH的设置。
-
路径解析安全:在覆盖率测量过程中保持与Python解释器一致的路径安全策略。
-
跨平台一致性:确保在不同操作系统上提供一致的安全行为。
升级建议
对于现有项目:
-
配置迁移:建议将配置文件中的
source配置逐步迁移到source_dirs,以获得更好的错误检查。 -
测试验证:升级后应全面运行测试套件,验证覆盖率数据收集是否正常。
-
CI/CD调整:如果CI环境中使用Python 3.11及以上版本,确保PYTHONSAFEPATH设置不会影响覆盖率测量。
总结
coverage.py 7.8.0版本通过引入source_dirs配置和支持PYTHONSAFEPATH环境变量,进一步提升了工具的可靠性和安全性。这些改进使得开发者能够更准确地测量代码覆盖率,同时保持与现代Python版本的安全特性兼容。作为Python测试工具链中的重要一环,coverage.py的持续演进有助于提升整个Python生态的代码质量保障能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00