Autoware中Obstacle Stop Planner模块的配置与问题解决
概述
在自动驾驶系统Autoware中,Obstacle Stop Planner(障碍物停止规划器)是一个重要的安全模块,负责在检测到前方障碍物时生成适当的停止轨迹。本文将详细介绍该模块的功能原理、配置方法以及常见问题的解决方案。
模块功能
Obstacle Stop Planner是Autoware运动规划层的关键组件,主要功能包括:
- 实时检测车辆前方障碍物
- 根据障碍物距离和车辆速度计算安全停止距离
- 生成平滑的减速轨迹
- 在必要时执行紧急制动
与Obstacle Cruise Planner(障碍物巡航规划器)相比,Obstacle Stop Planner采用更保守的安全策略,在检测到障碍物时会直接规划停止动作,而不是尝试减速巡航。
配置方法
在Autoware中启用Obstacle Stop Planner有两种方式:
方法一:修改预设配置文件
编辑autoware_launch/config/planning/preset/default_preset.yaml文件,找到motion_stop_planner_type参数,将其值从默认的"obstacle_cruise_planner"修改为"obstacle_stop_planner"。
方法二:启动时指定参数
在启动Autoware时通过命令行参数指定:
ros2 launch autoware_launch planning_simulator.launch.xml motion_stop_planner_type:=obstacle_stop_planner
常见问题与解决方案
问题现象
用户在切换为Obstacle Stop Planner后,系统无法进入自动驾驶模式,Auto按钮显示为灰色不可用状态,并出现以下错误提示:
The target mode is not available. Please check the diagnostics.
同时系统日志中会持续输出控制命令未接收的警告信息。
问题原因
经过分析,该问题通常由以下原因导致:
- 节点名称与类型不匹配:系统尝试加载的节点名称"obstacle_stop_planner"与实际的节点类型"motion_planning::ObstacleStopPlannerNode"不一致
- 代码版本过旧:用户使用的Autoware版本缺少关键更新,导致节点注册信息不正确
解决方案
- 更新Autoware代码库至最新版本
- 执行完整的清理和重建:
rm -rf install/autoware_signal_processing build/autoware_signal_processing colcon build
- 确保所有依赖包都已正确编译
技术要点
-
节点加载机制:Autoware使用ROS2的组件容器机制动态加载规划模块,节点名称和类型的严格匹配是关键
-
诊断系统:当关键话题(如控制命令、规划轨迹)未按时接收时,Autoware的诊断系统会阻止模式切换,确保系统安全
-
构建系统:对于信号处理等底层模块,有时需要完全清理后重新构建才能确保二进制兼容性
最佳实践
- 在修改规划器类型后,建议执行完整系统重启
- 定期更新代码库并关注相关模块的变更日志
- 遇到类似问题时,首先检查launch.log中的节点加载错误
- 对于复杂的构建问题,尝试从干净的工作空间开始重建
通过正确配置和及时更新,Obstacle Stop Planner能够为Autoware系统提供可靠的安全保障,在复杂城市环境中实现安全的障碍物应对策略。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









