ART对抗鲁棒性工具库中ZooAttack生成对抗样本的挑战分析
2025-06-09 18:38:32作者:邓越浪Henry
背景介绍
IBM开发的对抗鲁棒性工具库(ART)是一个用于评估和提高机器学习模型对抗鲁棒性的Python库。其中ZooAttack是一种基于零阶优化的黑盒对抗攻击方法,它不需要访问目标模型的内部参数,仅通过查询模型输出来生成对抗样本。
问题现象
在使用ART库的ZooAttack对梯度提升树(GBDT)模型进行对抗攻击时,发现攻击无法生成有效的对抗样本。具体表现为:
- 在原始未标准化的Adult收入预测数据集上,攻击完全失败
- 只有对数据进行MinMax标准化处理后,攻击才能成功生成对抗样本
- 攻击成功率与数据预处理方式密切相关
技术分析
数据尺度的影响
ZooAttack作为一种基于优化的对抗攻击方法,对输入数据的尺度非常敏感。当特征值范围差异较大时:
- 优化过程中的梯度估计会变得不稳定
- 固定的学习率参数难以适应不同尺度的特征
- 扰动大小难以统一控制
分类器接口配置
ART的SklearnClassifier包装器需要正确设置clip_values参数来定义输入数据的有效范围。对于未标准化的数据:
- 如果没有显式设置clip_values,攻击可能会生成超出合理范围的对抗样本
- 这些无效样本被模型拒绝,导致攻击失败
攻击目标选择
攻击生成对抗样本时需要明确目标:
- 默认情况下,攻击会针对模型预测错误的样本
- 如果指定y_test作为目标,可以强制攻击所有样本
- 对于高准确率模型,默认设置可能导致攻击样本数量很少
解决方案建议
数据预处理标准化
- 推荐在使用ZooAttack前对数据进行标准化处理
- MinMax标准化或Z-score标准化都能改善攻击效果
- 标准化后特征尺度统一,便于攻击参数调优
正确配置分类器接口
- 显式设置SklearnClassifier的clip_values参数
- 对于未标准化数据,根据特征实际范围设置
- 对于标准化数据,通常设置为[0,1]或[-1,1]
攻击参数调优
- 调整学习率(learning_rate)适应数据尺度
- 增加最大迭代次数(max_iter)提高攻击成功率
- 适当调整置信度(confidence)阈值
实践建议
对于表格数据上的对抗攻击:
- 标准化预处理是必要步骤
- 离散特征需要特殊处理
- 树模型对对抗样本的脆弱性低于神经网络
- 可尝试结合特征重要性(use_importance=True)提高攻击效率
通过以上分析和调整,可以显著提高ZooAttack在类似场景下的对抗样本生成效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355