ROCm多版本安装指南:Ubuntu系统常见问题解析
2025-06-08 05:50:58作者:段琳惟
前言
在Ubuntu系统上安装AMD ROCm(Radeon Open Compute)平台时,多版本安装是一个常见的需求。本文将详细介绍在Ubuntu 22.04(Jammy)系统上安装ROCm 6.4.0和6.3.3双版本时可能遇到的问题及其解决方案。
版本号格式问题
在配置APT软件源时,用户需要注意ROCm版本号的书写格式存在一个特殊现象:
- 添加软件源时:必须使用简化的版本号格式(如6.4)
- 安装软件包时:需要使用完整的版本号格式(如6.4.0)
这种不一致性可能会给用户带来困惑。正确的配置命令应如下所示:
for ver in 6.4 6.3.3; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$ver jammy main" \
| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
环境变量设置问题
在配置amdgpu-dkms仓库时,用户需要注意Bash变量赋值的语法规则。常见错误是在等号(=)前后添加了空格,这会导致命令执行失败。
错误示例:
ver = 6.4 # 等号前后有空格,会导致错误
正确写法:
ver=6.4 # 等号前后无空格
完整的amdgpu仓库配置命令应为:
ver=6.4
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$ver/ubuntu jammy main" \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update
优先级设置
在多版本安装场景下,正确设置软件包优先级非常重要。这可以确保系统在多个可用版本中选择正确的软件包。优先级设置命令如下:
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
最佳实践建议
- 版本一致性:建议ROCm团队统一版本号格式标准,减少用户混淆
- 文档验证:所有安装命令应在实际环境中验证后再发布
- 空格敏感性:在编写Shell脚本时,特别注意变量赋值等敏感语法
总结
通过本文的指导,用户应该能够避免在Ubuntu系统上安装多版本ROCm时遇到的常见问题。记住关键点:软件源配置使用简化版本号,安装时使用完整版本号,变量赋值避免空格。这些细节将帮助您顺利完成ROCm环境的搭建。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492