ViewAL 开源项目使用教程
2024-09-25 10:14:41作者:傅爽业Veleda
1. 项目介绍
ViewAL 是一个用于语义分割的主动学习策略的开源实现,由 Yawar Siddiqui、Julien Valentin 和 Matthias Niessner 在 CVPR 2020 上提出。该项目通过利用多视图数据集中的视点一致性,提出了一种新颖的主动学习方法,称为 ViewAL。ViewAL 通过视点熵来选择最具信息量的样本进行标注,从而在减少标注工作量的同时提高模型的性能。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.x
- PyTorch
- CUDA (如果使用 GPU)
克隆项目
首先,克隆 ViewAL 项目到本地:
git clone https://github.com/nihalsid/ViewAL.git
cd ViewAL
安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
运行示例
以下是一个简单的示例命令,用于在 scenenet-rgbd 数据集上运行 ViewAL 的主动学习方法:
python train_active.py --dataset scenenet-rgbd --workers 2 --epochs 50 --eval-interval 5 --batch-size=6 --lr 0.0004 --use-lr-scheduler --lr-scheduler step --step-size 35 --checkname regional_viewmckldiv_spx_1_7x2_lr-0.0004_bs-6_ep-60_wb-0_lrs-1_240x320 --base-size 240 320 --max-iterations 7 --active-selection-size 2 --active-selection-mode viewmc_kldiv_region --region-selection-mode superpixel
3. 应用案例和最佳实践
应用案例
ViewAL 可以应用于多种语义分割任务,特别是在需要大量标注数据的情况下。例如,在室内场景的语义分割任务中,ViewAL 可以通过选择最具信息量的视点来减少标注工作量,同时保持模型的性能。
最佳实践
- 数据集准备:确保数据集符合项目要求的结构,包括 RGB 帧、深度图、标签图等。
- 超参数调优:根据具体任务调整超参数,如学习率、批量大小、迭代次数等。
- 模型评估:定期评估模型性能,确保主动学习策略的有效性。
4. 典型生态项目
ViewAL 作为一个主动学习策略的实现,可以与其他语义分割项目结合使用,例如:
- DeepLabV3+:ViewAL 项目中使用了 DeepLabV3+ 作为基础模型,可以进一步扩展和优化。
- Superpixel 生成工具:项目中使用了 SEEDS 实现来生成超像素,可以探索其他超像素生成方法。
- 数据增强工具:结合数据增强工具,进一步提升模型的泛化能力。
通过结合这些生态项目,可以进一步提升 ViewAL 在语义分割任务中的表现。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1