ViewAL 开源项目使用教程
2024-09-25 03:03:51作者:傅爽业Veleda
1. 项目介绍
ViewAL 是一个用于语义分割的主动学习策略的开源实现,由 Yawar Siddiqui、Julien Valentin 和 Matthias Niessner 在 CVPR 2020 上提出。该项目通过利用多视图数据集中的视点一致性,提出了一种新颖的主动学习方法,称为 ViewAL。ViewAL 通过视点熵来选择最具信息量的样本进行标注,从而在减少标注工作量的同时提高模型的性能。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.x
- PyTorch
- CUDA (如果使用 GPU)
克隆项目
首先,克隆 ViewAL 项目到本地:
git clone https://github.com/nihalsid/ViewAL.git
cd ViewAL
安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
运行示例
以下是一个简单的示例命令,用于在 scenenet-rgbd 数据集上运行 ViewAL 的主动学习方法:
python train_active.py --dataset scenenet-rgbd --workers 2 --epochs 50 --eval-interval 5 --batch-size=6 --lr 0.0004 --use-lr-scheduler --lr-scheduler step --step-size 35 --checkname regional_viewmckldiv_spx_1_7x2_lr-0.0004_bs-6_ep-60_wb-0_lrs-1_240x320 --base-size 240 320 --max-iterations 7 --active-selection-size 2 --active-selection-mode viewmc_kldiv_region --region-selection-mode superpixel
3. 应用案例和最佳实践
应用案例
ViewAL 可以应用于多种语义分割任务,特别是在需要大量标注数据的情况下。例如,在室内场景的语义分割任务中,ViewAL 可以通过选择最具信息量的视点来减少标注工作量,同时保持模型的性能。
最佳实践
- 数据集准备:确保数据集符合项目要求的结构,包括 RGB 帧、深度图、标签图等。
- 超参数调优:根据具体任务调整超参数,如学习率、批量大小、迭代次数等。
- 模型评估:定期评估模型性能,确保主动学习策略的有效性。
4. 典型生态项目
ViewAL 作为一个主动学习策略的实现,可以与其他语义分割项目结合使用,例如:
- DeepLabV3+:ViewAL 项目中使用了 DeepLabV3+ 作为基础模型,可以进一步扩展和优化。
- Superpixel 生成工具:项目中使用了 SEEDS 实现来生成超像素,可以探索其他超像素生成方法。
- 数据增强工具:结合数据增强工具,进一步提升模型的泛化能力。
通过结合这些生态项目,可以进一步提升 ViewAL 在语义分割任务中的表现。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100