KerasNLP中机器翻译示例的采样器参数问题解析
2025-06-28 08:43:19作者:韦蓉瑛
在使用KerasNLP进行英西机器翻译时,开发者可能会遇到采样器参数不匹配的问题。本文将深入分析这个问题的根源,并提供完整的解决方案。
问题现象
当运行KerasNLP官方提供的英西机器翻译示例时,在预测阶段会出现TypeError: Sampler.__call__() got an unexpected keyword argument 'end_token_id'错误。这表明采样器接口的参数名称已经发生了变化。
问题根源
这个错误源于KerasNLP库版本的更新导致API接口变更。在较新版本的KerasNLP中,采样器的停止条件参数名称从end_token_id变更为stop_token_ids,并且该参数现在需要接收一个列表而非单个值。
完整解决方案
要解决这个问题,需要对解码函数进行三处关键修改:
- 参数名称变更:将
end_token_id改为stop_token_ids - 参数类型调整:将单个token ID包装成列表形式
- 输入张量处理:确保编码器输入是张量格式
修改后的解码函数示例如下:
def decode_sequences(input_sentences):
batch_size = 1
# 处理编码器输入
encoder_input_tokens = ops.convert_to_tensor(eng_tokenizer(input_sentences))
if len(encoder_input_tokens[0]) < MAX_SEQUENCE_LENGTH:
pads = ops.full((1, MAX_SEQUENCE_LENGTH - len(encoder_input_tokens[0])), 0)
encoder_input_tokens = ops.concatenate([encoder_input_tokens.to_tensor(), pads], 1)
# 定义下一个token的预测函数
def next(prompt, cache, index):
logits = transformer([encoder_input_tokens, prompt])[:, index - 1, :]
return logits, None, cache
# 构建初始prompt
length = 40
start = ops.full((batch_size, 1), spa_tokenizer.token_to_id("[START]"))
pad = ops.full((batch_size, length - 1), spa_tokenizer.token_to_id("[PAD]"))
prompt = ops.concatenate((start, pad), axis=-1)
# 使用修改后的采样器参数
generated_tokens = keras_nlp.samplers.GreedySampler()(
next,
prompt,
stop_token_ids=[spa_tokenizer.token_to_id("[END]")], # 关键修改点
index=1,
)
generated_sentences = spa_tokenizer.detokenize(generated_tokens)
return generated_sentences
技术背景
KerasNLP的采样器接口变更反映了自然语言生成任务中更灵活的需求。新的stop_token_ids参数设计允许开发者指定多个停止token,这在处理复杂生成任务时非常有用。例如,可以同时设置[END]和句号作为停止条件。
最佳实践
- 在处理tokenizer输出时,始终使用
.to_tensor()确保数据格式正确 - 查阅所用KerasNLP版本的官方文档,了解最新的API规范
- 对于生成任务,考虑使用更先进的采样策略如Beam Search
通过以上修改和最佳实践,开发者可以顺利运行KerasNLP的机器翻译示例,并在此基础上构建更复杂的自然语言处理应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111