KindleEar项目实战:处理动态加载的新闻网站抓取方案
在KindleEar项目中,处理动态加载的新闻网站是一个常见的技术挑战。本文将通过一个实际案例,详细介绍如何应对这类网站的抓取问题,特别是针对那些使用AJAX动态生成内容的网站。
问题背景
许多现代新闻网站采用动态加载技术,初始HTML页面中只包含基本框架和JavaScript代码,实际内容通过后续AJAX请求获取。这种设计对传统爬虫提出了挑战,因为直接解析初始HTML无法获取有效内容。
技术分析
1. 动态内容识别
通过浏览器开发者工具分析网络请求,可以发现目标网站的实际内容是通过POST请求获取的。请求URL为特定API端点,参数包括页码和视图类型。
2. 链接提取策略
目标网站的链接采用JavaScript函数封装,形式为:
javascript:goToSSODreamKotra('实际URL');
需要从这种格式中提取出有效的HTTP链接。可以使用正则表达式匹配单引号内的URL部分。
3. 分页处理
网站采用分页加载机制,每页返回10篇文章。通过修改请求参数中的pageNo可以获取更多内容。
解决方案实现
1. 基础Recipe结构
创建一个继承自WebPageUrlNewsRecipe的自定义Recipe类,设置基本属性如标题、编码、语言等。
2. 关键方法重载
需要重载两个关键方法:
extractHyperLink方法:从JavaScript字符串中提取有效URL
def extractHyperLink(self, txt):
expr = r"""(?i)\b(https?://[^\s()<>]+(?:\([\w\d]+\)|[^\s`!()\[\]{};:'".,<>?""‘’]))"""
match = re.search(expr, txt)
return match.group(0) if match else None
extract_urls方法:处理分页请求并提取文章链接
def extract_urls(self, main_title, main_url):
articles = []
for pageNo in range(1, 4): # 抓取前3页内容
resp = self.browser.post(main_url, data={'pageNo': pageNo, 'viewType': 'html'})
if resp.status_code != 200:
continue
soup = BeautifulSoup(resp.text, 'lxml')
for a in soup.find_all('a', href=True, title=True):
articleTitle = a.string
articleUrl = self.extractHyperLink(a['href'])
if articleUrl and articleTitle:
articles.append((articleTitle, articleUrl))
return articles
3. 替代方案:parse_feeds重载
另一种实现方式是直接重载parse_feeds方法,这种方法更加灵活:
def parse_feeds(self):
url = 'API端点URL'
feed = Feed()
# 初始化feed属性
for pageNo in range(1, 4):
resp = self.browser.open(url, data={'pageNo': pageNo, 'viewType': 'html'})
# 解析响应并填充feed.articles
return [feed]
常见问题处理
-
CSS解析错误:现代网站可能使用CSS变量等新特性,KindleEar的解析器可能无法完全支持,这些警告可以忽略。
-
内容提取失败:如果预定义的内容提取规则不生效,系统会自动回退到可读性算法提取主要内容。
-
反爬机制:部分网站可能有反爬措施,需要适当调整请求头或添加延迟。
最佳实践建议
-
使用浏览器开发者工具分析网站的实际数据请求方式。
-
对于动态内容,优先查找直接的数据API接口。
-
处理JavaScript链接时,注意URL可能被编码或包含特殊字符。
-
合理设置分页参数,避免请求过多页面影响性能。
-
添加适当的错误处理和日志记录,便于调试。
通过以上方法,可以有效解决KindleEar项目中遇到的动态加载网站抓取问题,为用户提供稳定的新闻推送服务。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00