KindleEar项目实战:处理动态加载的新闻网站抓取方案
在KindleEar项目中,处理动态加载的新闻网站是一个常见的技术挑战。本文将通过一个实际案例,详细介绍如何应对这类网站的抓取问题,特别是针对那些使用AJAX动态生成内容的网站。
问题背景
许多现代新闻网站采用动态加载技术,初始HTML页面中只包含基本框架和JavaScript代码,实际内容通过后续AJAX请求获取。这种设计对传统爬虫提出了挑战,因为直接解析初始HTML无法获取有效内容。
技术分析
1. 动态内容识别
通过浏览器开发者工具分析网络请求,可以发现目标网站的实际内容是通过POST请求获取的。请求URL为特定API端点,参数包括页码和视图类型。
2. 链接提取策略
目标网站的链接采用JavaScript函数封装,形式为:
javascript:goToSSODreamKotra('实际URL');
需要从这种格式中提取出有效的HTTP链接。可以使用正则表达式匹配单引号内的URL部分。
3. 分页处理
网站采用分页加载机制,每页返回10篇文章。通过修改请求参数中的pageNo可以获取更多内容。
解决方案实现
1. 基础Recipe结构
创建一个继承自WebPageUrlNewsRecipe的自定义Recipe类,设置基本属性如标题、编码、语言等。
2. 关键方法重载
需要重载两个关键方法:
extractHyperLink方法:从JavaScript字符串中提取有效URL
def extractHyperLink(self, txt):
expr = r"""(?i)\b(https?://[^\s()<>]+(?:\([\w\d]+\)|[^\s`!()\[\]{};:'".,<>?""‘’]))"""
match = re.search(expr, txt)
return match.group(0) if match else None
extract_urls方法:处理分页请求并提取文章链接
def extract_urls(self, main_title, main_url):
articles = []
for pageNo in range(1, 4): # 抓取前3页内容
resp = self.browser.post(main_url, data={'pageNo': pageNo, 'viewType': 'html'})
if resp.status_code != 200:
continue
soup = BeautifulSoup(resp.text, 'lxml')
for a in soup.find_all('a', href=True, title=True):
articleTitle = a.string
articleUrl = self.extractHyperLink(a['href'])
if articleUrl and articleTitle:
articles.append((articleTitle, articleUrl))
return articles
3. 替代方案:parse_feeds重载
另一种实现方式是直接重载parse_feeds方法,这种方法更加灵活:
def parse_feeds(self):
url = 'API端点URL'
feed = Feed()
# 初始化feed属性
for pageNo in range(1, 4):
resp = self.browser.open(url, data={'pageNo': pageNo, 'viewType': 'html'})
# 解析响应并填充feed.articles
return [feed]
常见问题处理
-
CSS解析错误:现代网站可能使用CSS变量等新特性,KindleEar的解析器可能无法完全支持,这些警告可以忽略。
-
内容提取失败:如果预定义的内容提取规则不生效,系统会自动回退到可读性算法提取主要内容。
-
反爬机制:部分网站可能有反爬措施,需要适当调整请求头或添加延迟。
最佳实践建议
-
使用浏览器开发者工具分析网站的实际数据请求方式。
-
对于动态内容,优先查找直接的数据API接口。
-
处理JavaScript链接时,注意URL可能被编码或包含特殊字符。
-
合理设置分页参数,避免请求过多页面影响性能。
-
添加适当的错误处理和日志记录,便于调试。
通过以上方法,可以有效解决KindleEar项目中遇到的动态加载网站抓取问题,为用户提供稳定的新闻推送服务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00