Redux Toolkit中如何正确定义和使用TypedUseQuery类型
2025-05-21 11:34:53作者:胡易黎Nicole
在Redux Toolkit项目开发中,我们经常需要封装统一的API调用接口,以便在不同应用间共享组件。本文将深入探讨如何正确使用TypedUseQuery类型来定义统一的查询钩子接口。
问题背景
当我们需要在多个应用间共享使用Redux Toolkit Query的组件时,常常会遇到一个需求:组件需要调用API,但具体的API实现可能因应用而异。这时就需要定义一个统一的接口类型,让组件不关心具体实现,而由各个应用自行提供符合规范的实现。
错误示范
初学者可能会尝试这样定义和使用TypedUseQuery类型:
import {FetchArgs, BaseQueryFn} from '@reduxjs/toolkit/query';
import {TypedUseQuery} from '@reduxjs/toolkit/query/react';
export type UseFetchingType = TypedUseQuery<JSONValue, FetchArgs, BaseQueryFn>;
// 错误的实现方式
export const defaultUseFetching: UseFetchingType = () => ({
data: undefined,
error: undefined,
isUninitialized: true,
isLoading: false,
isFetching: false,
isSuccess: false,
isError: false,
refetch: () => {},
});
这种写法会导致TypeScript报错,因为TypedUseQuery类型实际上是一个复杂的泛型类型,它需要考虑selectFromResult等选项,而简单的返回固定值对象并不符合其类型约束。
正确实现方式
正确的做法是使用Redux Toolkit Query实际生成的查询钩子来赋值:
// 首先创建API切片
export const apiSlice = createApi({
reducerPath: 'api',
baseQuery: autoBaseQueryWithReAuth,
endpoints: _builder => ({}),
});
// 然后注入具体端点
const slice = apiSlice.injectEndpoints({
endpoints: builder => ({
generalFetching: builder.query<JSONValue, string | FetchArgs>({
query: args =>
typeof args === 'object'
? {
...args,
method: args.method ?? 'GET',
params: {rid: crypto.randomUUID(), ...args.params},
}
: {
url: args,
method: 'GET',
params: {rid: crypto.randomUUID()},
},
transformResponse: (rawResult) => rawResult.data!,
}),
}),
});
// 获取生成的查询钩子
const {useGeneralFetchingQuery} = slice;
// 这才是正确的赋值方式
const defaultUseFetching: UseFetchingType = useGeneralFetchingQuery;
类型定义解析
让我们仔细看看TypedUseQuery的类型定义:
type UseFetchingType = TypedUseQuery<ResultType, QueryArg, BaseQuery>;
其中三个泛型参数分别代表:
- ResultType: 查询结果的类型
- QueryArg: 查询参数的类型,可以是字符串或FetchArgs对象
- BaseQuery: 基础查询函数的类型
架构设计建议
在实际项目中,推荐采用以下架构设计:
- 定义统一的接口类型(UseFetchingType)
- 组件层只依赖接口类型,不关心具体实现
- 每个应用提供自己的实现,注入到组件中
- 组件在不同应用中运行时,会自动使用对应的API实现
这种设计模式很好地遵循了依赖倒置原则,使组件与具体实现解耦,提高了代码的可复用性和可维护性。
总结
正确使用Redux Toolkit的TypedUseQuery类型需要注意以下几点:
- TypedUseQuery是一个复杂的泛型类型,不能简单地用固定返回值来模拟
- 应该使用createApi和injectEndpoints生成的真实查询钩子
- 类型参数需要正确定义结果类型、查询参数类型和基础查询类型
- 这种类型定义方式非常适合在需要统一接口的多应用场景中使用
通过本文的介绍,希望读者能够掌握在Redux Toolkit项目中正确定义和使用TypedUseQuery类型的方法,构建出更加灵活、可复用的前端架构。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1