Redux Toolkit中如何正确定义和使用TypedUseQuery类型
2025-05-21 08:11:32作者:胡易黎Nicole
在Redux Toolkit项目开发中,我们经常需要封装统一的API调用接口,以便在不同应用间共享组件。本文将深入探讨如何正确使用TypedUseQuery类型来定义统一的查询钩子接口。
问题背景
当我们需要在多个应用间共享使用Redux Toolkit Query的组件时,常常会遇到一个需求:组件需要调用API,但具体的API实现可能因应用而异。这时就需要定义一个统一的接口类型,让组件不关心具体实现,而由各个应用自行提供符合规范的实现。
错误示范
初学者可能会尝试这样定义和使用TypedUseQuery类型:
import {FetchArgs, BaseQueryFn} from '@reduxjs/toolkit/query';
import {TypedUseQuery} from '@reduxjs/toolkit/query/react';
export type UseFetchingType = TypedUseQuery<JSONValue, FetchArgs, BaseQueryFn>;
// 错误的实现方式
export const defaultUseFetching: UseFetchingType = () => ({
data: undefined,
error: undefined,
isUninitialized: true,
isLoading: false,
isFetching: false,
isSuccess: false,
isError: false,
refetch: () => {},
});
这种写法会导致TypeScript报错,因为TypedUseQuery类型实际上是一个复杂的泛型类型,它需要考虑selectFromResult等选项,而简单的返回固定值对象并不符合其类型约束。
正确实现方式
正确的做法是使用Redux Toolkit Query实际生成的查询钩子来赋值:
// 首先创建API切片
export const apiSlice = createApi({
reducerPath: 'api',
baseQuery: autoBaseQueryWithReAuth,
endpoints: _builder => ({}),
});
// 然后注入具体端点
const slice = apiSlice.injectEndpoints({
endpoints: builder => ({
generalFetching: builder.query<JSONValue, string | FetchArgs>({
query: args =>
typeof args === 'object'
? {
...args,
method: args.method ?? 'GET',
params: {rid: crypto.randomUUID(), ...args.params},
}
: {
url: args,
method: 'GET',
params: {rid: crypto.randomUUID()},
},
transformResponse: (rawResult) => rawResult.data!,
}),
}),
});
// 获取生成的查询钩子
const {useGeneralFetchingQuery} = slice;
// 这才是正确的赋值方式
const defaultUseFetching: UseFetchingType = useGeneralFetchingQuery;
类型定义解析
让我们仔细看看TypedUseQuery的类型定义:
type UseFetchingType = TypedUseQuery<ResultType, QueryArg, BaseQuery>;
其中三个泛型参数分别代表:
- ResultType: 查询结果的类型
- QueryArg: 查询参数的类型,可以是字符串或FetchArgs对象
- BaseQuery: 基础查询函数的类型
架构设计建议
在实际项目中,推荐采用以下架构设计:
- 定义统一的接口类型(UseFetchingType)
- 组件层只依赖接口类型,不关心具体实现
- 每个应用提供自己的实现,注入到组件中
- 组件在不同应用中运行时,会自动使用对应的API实现
这种设计模式很好地遵循了依赖倒置原则,使组件与具体实现解耦,提高了代码的可复用性和可维护性。
总结
正确使用Redux Toolkit的TypedUseQuery类型需要注意以下几点:
- TypedUseQuery是一个复杂的泛型类型,不能简单地用固定返回值来模拟
- 应该使用createApi和injectEndpoints生成的真实查询钩子
- 类型参数需要正确定义结果类型、查询参数类型和基础查询类型
- 这种类型定义方式非常适合在需要统一接口的多应用场景中使用
通过本文的介绍,希望读者能够掌握在Redux Toolkit项目中正确定义和使用TypedUseQuery类型的方法,构建出更加灵活、可复用的前端架构。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8