TypeBox中Value.Parse()与additionalProperties的注意事项
2025-06-06 06:56:10作者:瞿蔚英Wynne
TypeBox是一个用于TypeScript的运行时类型检查库,它允许开发者定义类型模式并在运行时验证数据。在使用过程中,开发者可能会遇到关于additionalProperties标志在Value.Parse()方法中表现不一致的问题。
问题背景
在TypeBox中,当定义一个对象模式时,可以通过设置additionalProperties: false来禁止对象包含模式定义之外的额外属性。这个设置在Value.Check()方法中能够正常工作,但在Value.Parse()方法中却不会抛出错误。
原因分析
实际上,这是TypeBox的预期行为。Value.Parse()方法内部实现了一个默认的处理管道,包含多个操作步骤:
- Clone - 克隆值
- Clean - 清理值(在此步骤中会移除额外属性)
- Default - 分配默认值
- Convert - 应用值强制转换
- Assert - 检查值是否正确
- Decode - 解码值
在Clean操作阶段,Value.Parse()会主动移除额外属性而不是抛出错误,这与Value.Check()的严格验证行为不同。
解决方案
如果开发者希望在解析过程中严格验证额外属性并抛出错误,可以自定义解析管道,省略Clean操作步骤:
const result = Value.Parse([
'Clone', // 克隆值
// 'Clean', // 跳过清理步骤
'Default', // 分配默认值
'Convert', // 应用值强制转换
'Assert', // 检查值是否正确(此处会验证额外属性)
'Decode' // 解码值
], schema, value);
通过这种方式,当输入值包含模式定义之外的属性时,Assert操作会抛出错误,而不是静默地移除额外属性。
最佳实践
- 如果需要快速验证数据而不关心额外属性,使用默认的
Value.Parse() - 如果需要严格验证数据并确保没有额外属性,使用自定义管道或
Value.Check() - 在性能敏感场景中,
Value.Check()通常比Value.Parse()更高效
理解TypeBox内部处理管道的设计理念,可以帮助开发者更灵活地选择适合自己需求的数据验证方式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218