GLM-4模型推理中的概率张量异常问题分析与解决方案
2025-06-03 21:16:42作者:伍希望
问题现象描述
在使用GLM-4-9B模型进行推理时,部分用户遇到了"probability tensor contains either inf, nan or element < 0"的运行时错误。该问题主要出现在使用CUDA 12.1环境下的多卡推理场景中,当用户尝试与模型进行交互式对话时,系统会抛出概率张量包含非法值的异常。
错误原因分析
经过技术分析,该问题主要由以下几个因素导致:
-
浮点精度问题:在A系列和部分NVIDIA显卡上,对BF16和FP16精度的支持可能存在兼容性问题,导致在计算过程中产生NaN或inf值。
-
多卡推理配置:在多GPU环境下,模型并行计算时可能出现数值稳定性问题,特别是在处理概率分布时。
-
torch版本兼容性:虽然官方测试在torch 2.3.0环境下运行正常,但不同CUDA版本和硬件组合可能导致数值计算行为的差异。
解决方案
针对这一问题,我们提供了几种有效的解决方案:
方案一:使用单卡推理
对于资源充足的用户,最简单的解决方案是限制模型在单张GPU上运行。这可以避免多卡并行带来的数值稳定性问题。
方案二:调整浮点精度
修改模型加载时的torch_dtype参数,将默认的自动精度选择改为显式指定:
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float32)
或
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float64)
方案三:环境配置调整
- 确保CUDA驱动版本与torch版本完全兼容
- 考虑使用CUDA 11.x版本而非12.x
- 检查显卡驱动是否为最新稳定版
技术原理深入
该问题的本质在于概率分布计算过程中的数值稳定性。当使用低精度浮点数(BF16/FP16)时,连续的矩阵乘法操作可能导致数值溢出或下溢。特别是在生成式模型的采样阶段,torch.multinomial()函数对输入的概率分布有严格要求,必须保证所有元素为非负且不包含无穷大或NaN值。
最佳实践建议
- 生产环境中建议使用torch.float32精度,它在精度和性能之间提供了良好的平衡
- 对于A100/A800等专业显卡,应特别注意驱动和CUDA版本的兼容性
- 在部署前进行充分的数值稳定性测试
- 监控推理过程中的数值异常,可考虑添加数值检查钩子
总结
GLM-4作为大型语言模型,在特定硬件环境下可能出现数值稳定性问题。通过调整浮点精度或简化并行策略,可以有效解决概率张量异常问题。未来随着框架和硬件的持续优化,这类问题将得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217