GLM-4模型推理中的概率张量异常问题分析与解决方案
2025-06-03 23:42:19作者:伍希望
问题现象描述
在使用GLM-4-9B模型进行推理时,部分用户遇到了"probability tensor contains either inf, nan or element < 0"的运行时错误。该问题主要出现在使用CUDA 12.1环境下的多卡推理场景中,当用户尝试与模型进行交互式对话时,系统会抛出概率张量包含非法值的异常。
错误原因分析
经过技术分析,该问题主要由以下几个因素导致:
-
浮点精度问题:在A系列和部分NVIDIA显卡上,对BF16和FP16精度的支持可能存在兼容性问题,导致在计算过程中产生NaN或inf值。
-
多卡推理配置:在多GPU环境下,模型并行计算时可能出现数值稳定性问题,特别是在处理概率分布时。
-
torch版本兼容性:虽然官方测试在torch 2.3.0环境下运行正常,但不同CUDA版本和硬件组合可能导致数值计算行为的差异。
解决方案
针对这一问题,我们提供了几种有效的解决方案:
方案一:使用单卡推理
对于资源充足的用户,最简单的解决方案是限制模型在单张GPU上运行。这可以避免多卡并行带来的数值稳定性问题。
方案二:调整浮点精度
修改模型加载时的torch_dtype参数,将默认的自动精度选择改为显式指定:
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float32)
或
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float64)
方案三:环境配置调整
- 确保CUDA驱动版本与torch版本完全兼容
- 考虑使用CUDA 11.x版本而非12.x
- 检查显卡驱动是否为最新稳定版
技术原理深入
该问题的本质在于概率分布计算过程中的数值稳定性。当使用低精度浮点数(BF16/FP16)时,连续的矩阵乘法操作可能导致数值溢出或下溢。特别是在生成式模型的采样阶段,torch.multinomial()函数对输入的概率分布有严格要求,必须保证所有元素为非负且不包含无穷大或NaN值。
最佳实践建议
- 生产环境中建议使用torch.float32精度,它在精度和性能之间提供了良好的平衡
- 对于A100/A800等专业显卡,应特别注意驱动和CUDA版本的兼容性
- 在部署前进行充分的数值稳定性测试
- 监控推理过程中的数值异常,可考虑添加数值检查钩子
总结
GLM-4作为大型语言模型,在特定硬件环境下可能出现数值稳定性问题。通过调整浮点精度或简化并行策略,可以有效解决概率张量异常问题。未来随着框架和硬件的持续优化,这类问题将得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19