GLM-4模型推理中的概率张量异常问题分析与解决方案
2025-06-03 04:57:31作者:伍希望
问题现象描述
在使用GLM-4-9B模型进行推理时,部分用户遇到了"probability tensor contains either inf, nan or element < 0"的运行时错误。该问题主要出现在使用CUDA 12.1环境下的多卡推理场景中,当用户尝试与模型进行交互式对话时,系统会抛出概率张量包含非法值的异常。
错误原因分析
经过技术分析,该问题主要由以下几个因素导致:
-
浮点精度问题:在A系列和部分NVIDIA显卡上,对BF16和FP16精度的支持可能存在兼容性问题,导致在计算过程中产生NaN或inf值。
-
多卡推理配置:在多GPU环境下,模型并行计算时可能出现数值稳定性问题,特别是在处理概率分布时。
-
torch版本兼容性:虽然官方测试在torch 2.3.0环境下运行正常,但不同CUDA版本和硬件组合可能导致数值计算行为的差异。
解决方案
针对这一问题,我们提供了几种有效的解决方案:
方案一:使用单卡推理
对于资源充足的用户,最简单的解决方案是限制模型在单张GPU上运行。这可以避免多卡并行带来的数值稳定性问题。
方案二:调整浮点精度
修改模型加载时的torch_dtype参数,将默认的自动精度选择改为显式指定:
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float32)
或
model = AutoModel.from_pretrained("THUDM/GLM-4-9B", torch_dtype=torch.float64)
方案三:环境配置调整
- 确保CUDA驱动版本与torch版本完全兼容
- 考虑使用CUDA 11.x版本而非12.x
- 检查显卡驱动是否为最新稳定版
技术原理深入
该问题的本质在于概率分布计算过程中的数值稳定性。当使用低精度浮点数(BF16/FP16)时,连续的矩阵乘法操作可能导致数值溢出或下溢。特别是在生成式模型的采样阶段,torch.multinomial()函数对输入的概率分布有严格要求,必须保证所有元素为非负且不包含无穷大或NaN值。
最佳实践建议
- 生产环境中建议使用torch.float32精度,它在精度和性能之间提供了良好的平衡
- 对于A100/A800等专业显卡,应特别注意驱动和CUDA版本的兼容性
- 在部署前进行充分的数值稳定性测试
- 监控推理过程中的数值异常,可考虑添加数值检查钩子
总结
GLM-4作为大型语言模型,在特定硬件环境下可能出现数值稳定性问题。通过调整浮点精度或简化并行策略,可以有效解决概率张量异常问题。未来随着框架和硬件的持续优化,这类问题将得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355