使用textmineR实现基于TextRank算法的文档摘要技术
2025-07-04 22:46:54作者:邵娇湘
概述
在自然语言处理领域,文档摘要是一个重要的研究方向。textmineR项目提供了一种基于TextRank算法的文档摘要实现方法,本文将详细介绍这一技术的原理和实现过程。
技术背景
文档摘要技术主要分为两大类:抽取式摘要和生成式摘要。textmineR采用的是抽取式摘要方法,其核心思想是从原文中提取关键句子组成摘要,而不是生成新的句子。
实现原理
textmineR的文档摘要实现基于以下几个关键步骤:
- 句子分割:将文档分割成单个句子
- 句子嵌入:将句子转换为向量表示
- 相似度计算:计算句子之间的相似度
- 图构建:构建句子相似度图
- 关键句子提取:使用图算法提取最重要的句子
详细实现步骤
1. 准备词嵌入模型
首先需要构建一个词嵌入模型作为基础:
library(textmineR)
# 加载数据
data(movie_review)
# 预处理文本
movie_review$review <- stringr::str_replace_all(movie_review$review, "<br */>", "")
# 创建词共现矩阵
tcm <- CreateTcm(doc_vec = movie_review$review,
skipgram_window = 10,
verbose = FALSE,
cpus = 2)
# 训练LDA模型获取嵌入
embeddings <- FitLdaModel(dtm = tcm,
k = 50,
iterations = 200,
burnin = 180,
alpha = 0.1,
beta = 0.05,
optimize_alpha = TRUE)
2. 文档摘要函数实现
下面是完整的文档摘要函数实现:
summarizer <- function(doc, gamma) {
if (length(doc) > 1)
return(sapply(doc, function(d) try(summarizer(d, gamma))))
# 分割句子
sent <- stringi::stri_split_boundaries(doc, type = "sentence")[[1]]
names(sent) <- seq_along(sent)
# 句子嵌入
e <- CreateDtm(sent, ngram_window = c(1,1), verbose = FALSE)
e <- e[rowSums(e) > 2, ]
vocab <- intersect(colnames(e), colnames(gamma))
e <- e / rowSums(e)
e <- e[, vocab] %*% t(gamma[, vocab])
e <- as.matrix(e)
# 计算相似度
e_dist <- CalcHellingerDist(e)
g <- (1 - e_dist) * 100
diag(g) <- 0
# 构建图
g <- apply(g, 1, function(x) {
x[x < sort(x, decreasing = TRUE)[3]] <- 0
x
})
g <- pmax(g, t(g))
# 计算特征向量中心性
g <- graph.adjacency(g, mode = "undirected", weighted = TRUE)
ev <- evcent(g)
# 提取关键句子
result <- sent[names(ev$vector)[order(ev$vector, decreasing = TRUE)[1:3]]]
result <- result[order(as.numeric(names(result)))]
paste(result, collapse = " ")
}
3. 使用示例
# 对前三个评论生成摘要
docs <- movie_review$review[1:3]
sums <- summarizer(docs, gamma = embeddings$gamma)
print(sums)
技术细节解析
句子嵌入
textmineR使用LDA模型将句子投影到概率空间,这种方法有以下优势:
- 考虑了词语的共现关系
- 保留了语义信息
- 适合概率距离度量
Hellinger距离
Hellinger距离是专门为概率分布设计的距离度量,计算公式为:
H(P,Q) = √(1/2 * Σ(√p_i - √q_i)²)
在代码中通过CalcHellingerDist
函数实现。
TextRank算法
TextRank算法借鉴了PageRank的思想,将文档摘要问题转化为图排序问题:
- 将句子作为图中的节点
- 根据相似度建立边
- 使用特征向量中心性评估节点重要性
实际应用建议
- 模型评估:在实际应用中应对嵌入模型进行全面评估
- 参数调优:根据具体任务调整LDA模型参数
- 句子数量:可根据需要调整返回的句子数量
- 预处理:确保文本预处理充分,去除无关符号
总结
textmineR提供的文档摘要实现结合了词嵌入技术和图算法,是一种有效的抽取式摘要方法。这种方法不需要训练数据,适用于各种文本摘要场景。通过调整参数和模型,可以进一步提高摘要质量。
对于希望快速实现文档摘要功能的R用户,textmineR提供了一个简单而强大的解决方案。理解其背后的原理有助于更好地应用和扩展这一功能。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0