使用textmineR实现基于TextRank算法的文档摘要技术
2025-07-04 12:25:19作者:邵娇湘
概述
在自然语言处理领域,文档摘要是一个重要的研究方向。textmineR项目提供了一种基于TextRank算法的文档摘要实现方法,本文将详细介绍这一技术的原理和实现过程。
技术背景
文档摘要技术主要分为两大类:抽取式摘要和生成式摘要。textmineR采用的是抽取式摘要方法,其核心思想是从原文中提取关键句子组成摘要,而不是生成新的句子。
实现原理
textmineR的文档摘要实现基于以下几个关键步骤:
- 句子分割:将文档分割成单个句子
- 句子嵌入:将句子转换为向量表示
- 相似度计算:计算句子之间的相似度
- 图构建:构建句子相似度图
- 关键句子提取:使用图算法提取最重要的句子
详细实现步骤
1. 准备词嵌入模型
首先需要构建一个词嵌入模型作为基础:
library(textmineR)
# 加载数据
data(movie_review)
# 预处理文本
movie_review$review <- stringr::str_replace_all(movie_review$review, "<br */>", "")
# 创建词共现矩阵
tcm <- CreateTcm(doc_vec = movie_review$review,
skipgram_window = 10,
verbose = FALSE,
cpus = 2)
# 训练LDA模型获取嵌入
embeddings <- FitLdaModel(dtm = tcm,
k = 50,
iterations = 200,
burnin = 180,
alpha = 0.1,
beta = 0.05,
optimize_alpha = TRUE)
2. 文档摘要函数实现
下面是完整的文档摘要函数实现:
summarizer <- function(doc, gamma) {
if (length(doc) > 1)
return(sapply(doc, function(d) try(summarizer(d, gamma))))
# 分割句子
sent <- stringi::stri_split_boundaries(doc, type = "sentence")[[1]]
names(sent) <- seq_along(sent)
# 句子嵌入
e <- CreateDtm(sent, ngram_window = c(1,1), verbose = FALSE)
e <- e[rowSums(e) > 2, ]
vocab <- intersect(colnames(e), colnames(gamma))
e <- e / rowSums(e)
e <- e[, vocab] %*% t(gamma[, vocab])
e <- as.matrix(e)
# 计算相似度
e_dist <- CalcHellingerDist(e)
g <- (1 - e_dist) * 100
diag(g) <- 0
# 构建图
g <- apply(g, 1, function(x) {
x[x < sort(x, decreasing = TRUE)[3]] <- 0
x
})
g <- pmax(g, t(g))
# 计算特征向量中心性
g <- graph.adjacency(g, mode = "undirected", weighted = TRUE)
ev <- evcent(g)
# 提取关键句子
result <- sent[names(ev$vector)[order(ev$vector, decreasing = TRUE)[1:3]]]
result <- result[order(as.numeric(names(result)))]
paste(result, collapse = " ")
}
3. 使用示例
# 对前三个评论生成摘要
docs <- movie_review$review[1:3]
sums <- summarizer(docs, gamma = embeddings$gamma)
print(sums)
技术细节解析
句子嵌入
textmineR使用LDA模型将句子投影到概率空间,这种方法有以下优势:
- 考虑了词语的共现关系
- 保留了语义信息
- 适合概率距离度量
Hellinger距离
Hellinger距离是专门为概率分布设计的距离度量,计算公式为:
H(P,Q) = √(1/2 * Σ(√p_i - √q_i)²)
在代码中通过CalcHellingerDist函数实现。
TextRank算法
TextRank算法借鉴了PageRank的思想,将文档摘要问题转化为图排序问题:
- 将句子作为图中的节点
- 根据相似度建立边
- 使用特征向量中心性评估节点重要性
实际应用建议
- 模型评估:在实际应用中应对嵌入模型进行全面评估
- 参数调优:根据具体任务调整LDA模型参数
- 句子数量:可根据需要调整返回的句子数量
- 预处理:确保文本预处理充分,去除无关符号
总结
textmineR提供的文档摘要实现结合了词嵌入技术和图算法,是一种有效的抽取式摘要方法。这种方法不需要训练数据,适用于各种文本摘要场景。通过调整参数和模型,可以进一步提高摘要质量。
对于希望快速实现文档摘要功能的R用户,textmineR提供了一个简单而强大的解决方案。理解其背后的原理有助于更好地应用和扩展这一功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
212
85
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1