使用textmineR实现基于TextRank算法的文档摘要技术
2025-07-04 09:24:00作者:邵娇湘
概述
在自然语言处理领域,文档摘要是一个重要的研究方向。textmineR项目提供了一种基于TextRank算法的文档摘要实现方法,本文将详细介绍这一技术的原理和实现过程。
技术背景
文档摘要技术主要分为两大类:抽取式摘要和生成式摘要。textmineR采用的是抽取式摘要方法,其核心思想是从原文中提取关键句子组成摘要,而不是生成新的句子。
实现原理
textmineR的文档摘要实现基于以下几个关键步骤:
- 句子分割:将文档分割成单个句子
- 句子嵌入:将句子转换为向量表示
- 相似度计算:计算句子之间的相似度
- 图构建:构建句子相似度图
- 关键句子提取:使用图算法提取最重要的句子
详细实现步骤
1. 准备词嵌入模型
首先需要构建一个词嵌入模型作为基础:
library(textmineR)
# 加载数据
data(movie_review)
# 预处理文本
movie_review$review <- stringr::str_replace_all(movie_review$review, "<br */>", "")
# 创建词共现矩阵
tcm <- CreateTcm(doc_vec = movie_review$review,
skipgram_window = 10,
verbose = FALSE,
cpus = 2)
# 训练LDA模型获取嵌入
embeddings <- FitLdaModel(dtm = tcm,
k = 50,
iterations = 200,
burnin = 180,
alpha = 0.1,
beta = 0.05,
optimize_alpha = TRUE)
2. 文档摘要函数实现
下面是完整的文档摘要函数实现:
summarizer <- function(doc, gamma) {
if (length(doc) > 1)
return(sapply(doc, function(d) try(summarizer(d, gamma))))
# 分割句子
sent <- stringi::stri_split_boundaries(doc, type = "sentence")[[1]]
names(sent) <- seq_along(sent)
# 句子嵌入
e <- CreateDtm(sent, ngram_window = c(1,1), verbose = FALSE)
e <- e[rowSums(e) > 2, ]
vocab <- intersect(colnames(e), colnames(gamma))
e <- e / rowSums(e)
e <- e[, vocab] %*% t(gamma[, vocab])
e <- as.matrix(e)
# 计算相似度
e_dist <- CalcHellingerDist(e)
g <- (1 - e_dist) * 100
diag(g) <- 0
# 构建图
g <- apply(g, 1, function(x) {
x[x < sort(x, decreasing = TRUE)[3]] <- 0
x
})
g <- pmax(g, t(g))
# 计算特征向量中心性
g <- graph.adjacency(g, mode = "undirected", weighted = TRUE)
ev <- evcent(g)
# 提取关键句子
result <- sent[names(ev$vector)[order(ev$vector, decreasing = TRUE)[1:3]]]
result <- result[order(as.numeric(names(result)))]
paste(result, collapse = " ")
}
3. 使用示例
# 对前三个评论生成摘要
docs <- movie_review$review[1:3]
sums <- summarizer(docs, gamma = embeddings$gamma)
print(sums)
技术细节解析
句子嵌入
textmineR使用LDA模型将句子投影到概率空间,这种方法有以下优势:
- 考虑了词语的共现关系
- 保留了语义信息
- 适合概率距离度量
Hellinger距离
Hellinger距离是专门为概率分布设计的距离度量,计算公式为:
H(P,Q) = √(1/2 * Σ(√p_i - √q_i)²)
在代码中通过CalcHellingerDist函数实现。
TextRank算法
TextRank算法借鉴了PageRank的思想,将文档摘要问题转化为图排序问题:
- 将句子作为图中的节点
- 根据相似度建立边
- 使用特征向量中心性评估节点重要性
实际应用建议
- 模型评估:在实际应用中应对嵌入模型进行全面评估
- 参数调优:根据具体任务调整LDA模型参数
- 句子数量:可根据需要调整返回的句子数量
- 预处理:确保文本预处理充分,去除无关符号
总结
textmineR提供的文档摘要实现结合了词嵌入技术和图算法,是一种有效的抽取式摘要方法。这种方法不需要训练数据,适用于各种文本摘要场景。通过调整参数和模型,可以进一步提高摘要质量。
对于希望快速实现文档摘要功能的R用户,textmineR提供了一个简单而强大的解决方案。理解其背后的原理有助于更好地应用和扩展这一功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210