Envoy代理在Kubernetes环境中的性能调优实践
引言
在现代微服务架构中,Envoy作为高性能代理被广泛使用。本文将通过一个实际案例,深入分析Envoy在Kubernetes环境中的性能表现,特别是关于并发配置对吞吐量的影响。
性能问题现象
在Kubernetes集群中部署Envoy作为API网关时,发现了一个典型的性能瓶颈现象:
- 使用Envoy代理时,系统仅能达到约4000 TPS(每秒事务数)
- 绕过Envoy直接访问后端服务时,吞吐量可达到30000 TPS
- Envoy容器的CPU使用率达到1000m(完全占用分配资源)
- 后端服务仅使用了约350m CPU资源
这表明性能瓶颈确实存在于Envoy代理层,而非后端服务。
深入分析
并发配置的关键影响
通过逐步测试发现,Envoy的并发配置对性能有决定性影响:
- 默认配置(并发=1):约4000 TPS
- 并发=2:约8000 TPS(最佳性能)
- 并发=3:约7000 TPS
- 并发=4:约6000 TPS
这个现象揭示了Envoy在Kubernetes环境中的一个重要性能特性:并发数应当与分配的CPU核心数相匹配。
资源配置分析
测试环境配置如下:
- Envoy容器:限制为1000m CPU(相当于1个vCPU核心)和512MB内存
- 后端服务:Netty实现,限制为2000m CPU和4GB内存
- 测试客户端:使用两个JMeter服务器节点
性能优化建议
基于测试结果,我们总结出以下Envoy性能调优原则:
-
CPU与并发数匹配:Envoy的并发工作线程数应设置为与分配的CPU核心数相同。对于1000m CPU(1核心),并发数设为2可获得最佳性能。
-
避免过度并发:当并发数超过最优值后,性能反而会下降,这是由于线程上下文切换和资源竞争导致的。
-
健康检查优化:在配置中适当调整健康检查间隔,避免过于频繁的检查消耗资源。
-
连接管理:考虑使用连接池和适当的超时设置来优化资源利用率。
配置调整实践
对于类似场景,建议进行以下配置调整:
-
明确设置并发数:在Envoy配置中显式设置与CPU核心数匹配的并发数。
-
资源分配:确保Envoy有足够的CPU资源处理预期负载,监控实际使用情况动态调整。
-
负载均衡策略:根据实际场景选择合适的负载均衡算法。
-
监控与调优:持续监控性能指标,进行迭代优化。
结论
Envoy作为高性能代理,在正确配置下能够发挥出色性能。关键在于理解其并发模型与资源分配的对应关系。通过本案例我们可以看到,简单的并发数调整就能带来显著的性能提升(从4000 TPS到8000 TPS)。这提醒我们在使用服务网格技术时,不能忽视基础配置的重要性。
对于生产环境部署,建议进行全面的性能基准测试,找出最适合特定工作负载的配置参数,从而充分发挥Envoy的性能潜力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









