NVIDIA NV-Ingest 服务 REST 接口设计与实现
2025-06-29 13:30:32作者:乔或婵
项目背景
NVIDIA NV-Ingest 是一个高效的数据摄取服务,主要用于处理大规模数据流的接收和处理。随着业务需求的增长,原有的服务接口方式已经不能满足多样化的集成需求。本文将详细介绍如何为 NV-Ingest 服务设计并实现一个基于 FastAPI 的 RESTful 接口,以提供更灵活、标准化的服务接入方式。
架构设计
新的 REST 接口采用 FastAPI 框架构建,主要包含两个核心功能端点:
- 作业提交端点:接收单个或批量作业请求
- 结果查询端点:根据作业ID获取处理结果
系统架构采用分层设计,包括:
- 表现层:处理HTTP请求和响应
- 业务逻辑层:生成唯一ID、转发作业请求
- 数据访问层:与底层NV-Ingest服务交互
核心功能实现
作业提交接口
/submit_job
端点实现了以下关键功能:
- 支持JSON格式的单个或批量作业提交
- 为每个作业生成唯一UUID标识符
- 将作业转发至底层NV-Ingest服务
- 返回包含作业ID的响应
@app.post("/submit_job")
async def submit_job(jobs: List[JobDescription]):
job_ids = [str(uuid.uuid4()) for _ in jobs]
# 转发作业到NV-Ingest服务
await nv_ingest_client.submit_jobs(jobs, job_ids)
return {"job_ids": job_ids}
结果查询接口
/fetch_job
端点提供:
- 多作业ID批量查询能力
- 结果聚合返回
- 错误处理机制
@app.get("/fetch_job")
async def fetch_job(job_ids: str = Query(...)):
ids = job_ids.split(",")
results = await nv_ingest_client.fetch_results(ids)
return {"results": results}
关键技术点
唯一标识生成
采用UUID v4算法生成作业标识符,确保:
- 分布式环境下唯一性
- 无需中央协调
- 足够的安全性
批量处理优化
针对批量作业场景特别优化:
- 批量ID预生成减少锁竞争
- 并行转发提高吞吐量
- 结果聚合减少网络往返
错误处理机制
完善的错误处理包括:
- 输入数据验证
- 服务不可用重试
- 部分失败处理
- 详细的错误信息返回
客户端集成
为方便使用,提供了多语言客户端支持:
Python客户端示例
client = NVIngestRESTClient(base_url="http://api.example.com")
job_ids = client.submit_jobs([
{"data": "job1_data"},
{"data": "job2_data"}
])
results = client.fetch_results(job_ids)
CLI工具扩展
新增命令行工具支持:
nv-ingest submit --file jobs.json
nv-ingest fetch --ids id1,id2,id3
性能考量
在设计时特别考虑了性能因素:
- 异步非阻塞IO模型
- 连接池管理
- 批量操作优化
- 轻量级JSON序列化
实际应用场景
该REST接口适用于:
- 微服务架构集成
- 跨语言系统调用
- 自动化流水线
- 大规模数据处理平台
总结
通过为NV-Ingest服务实现REST接口,显著提升了服务的易用性和集成能力。FastAPI框架的选择确保了高性能和良好的开发体验,而精心设计的接口规范则保证了系统的扩展性和稳定性。这一改进使得NV-Ingest服务能够更好地适应现代云原生架构的需求,为更广泛的应用场景提供了支持。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K

暂无简介
Dart
525
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
44
0