LBFGS-Lite: 轻盈强大的无约束优化解决方案
项目介绍
LBFGS-Lite 是一款专为 C++ 开发者设计的高性能无约束优化库。它采取了头文件唯一(header-only)的精简模式,基于 Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 算法,旨在提供便捷的优化工具。相比于传统优化库,LBFGS-Lite 注重在保持高效的同时,增强工程实践中的鲁棒性和易用性。自版本 2.1 起,通过集成 Eigen 库,性能得到了显著提升。此项目遵守 MIT 许可证,鼓励广泛应用于各种场景。
项目快速启动
要迅速开始使用 LBFGS-Lite,在你的 C++ 项目中只需几个简单步骤:
-
添加依赖: 首先,确保你的系统已安装 Eigen 库(通常可以通过包管理器如
apt install libeigen3-dev
完成)。 -
获取源码:
git clone https://github.com/ZJU-FAST-Lab/LBFGS-Lite.git
-
整合到项目: 将 LBFGS-Lite 的源文件夹
LBFGS-Lite
添加到你的项目路径中,然后在你的 C++ 文件中包含主头文件:#include "lbfgs.hpp"
-
示例代码: 使用简单的优化示例来体验 LBFGS-Lite:
#include "lbfgs.hpp" // 定义目标函数等 double evaluate(const std::vector<double>& x, std::vector<double>& g, void* data) { // 实现你的目标函数计算和梯度计算 } int main() { std::vector<double> initial_guess = {1.0, 1.0}; // 初始猜测值 lbfgs::lbfgs_parameter_t param; lbfgs::lbfgs_default_parameter(¶m); lbfgs::lbfgs_optimize(initial_guess.size(), initial_guess.data(), &evaluate, NULL, NULL, ¶m); return 0; }
应用案例和最佳实践
LBFGS-Lite 在多个领域内展现出其强大能力,包括但不限于机器学习的模型训练、物理仿真中的参数调优、以及图形学中的形状优化。最佳实践建议:
- 理解目标函数特性:对于非光滑或非凸函数,利用其非光滑优化支持。
- 调参艺术:虽然LBFGS-Lite追求最小配置,特定环境下微调参数可以优化性能。
- 监控迭代过程:适时检查迭代状态,确保优化过程按预期进行。
典型生态项目
LBFGS-Lite 因其简洁的集成方式和广泛的应用范围,被众多科研和工业项目采纳。在机器学习库、图像处理软件、以及仿真模拟等领域,它作为高效优化组件贡献力量。尽管直接关联的典型生态项目具体实例未直接提及,但任何寻求轻量级无约束优化解决方案的C++项目都可能受益于LBFGS-Lite。开发者社区中不乏将之融入自定义框架的成功案例,特别是那些重视性能和简便部署的项目。
以上就是针对LBFGS-Lite开源项目的基本使用教程和概览,希望能帮助您快速上手并有效利用这一优化神器。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









