LBFGS-Lite: 轻盈强大的无约束优化解决方案
项目介绍
LBFGS-Lite 是一款专为 C++ 开发者设计的高性能无约束优化库。它采取了头文件唯一(header-only)的精简模式,基于 Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 算法,旨在提供便捷的优化工具。相比于传统优化库,LBFGS-Lite 注重在保持高效的同时,增强工程实践中的鲁棒性和易用性。自版本 2.1 起,通过集成 Eigen 库,性能得到了显著提升。此项目遵守 MIT 许可证,鼓励广泛应用于各种场景。
项目快速启动
要迅速开始使用 LBFGS-Lite,在你的 C++ 项目中只需几个简单步骤:
-
添加依赖: 首先,确保你的系统已安装 Eigen 库(通常可以通过包管理器如
apt install libeigen3-dev完成)。 -
获取源码:
git clone https://github.com/ZJU-FAST-Lab/LBFGS-Lite.git -
整合到项目: 将 LBFGS-Lite 的源文件夹
LBFGS-Lite添加到你的项目路径中,然后在你的 C++ 文件中包含主头文件:#include "lbfgs.hpp" -
示例代码: 使用简单的优化示例来体验 LBFGS-Lite:
#include "lbfgs.hpp" // 定义目标函数等 double evaluate(const std::vector<double>& x, std::vector<double>& g, void* data) { // 实现你的目标函数计算和梯度计算 } int main() { std::vector<double> initial_guess = {1.0, 1.0}; // 初始猜测值 lbfgs::lbfgs_parameter_t param; lbfgs::lbfgs_default_parameter(¶m); lbfgs::lbfgs_optimize(initial_guess.size(), initial_guess.data(), &evaluate, NULL, NULL, ¶m); return 0; }
应用案例和最佳实践
LBFGS-Lite 在多个领域内展现出其强大能力,包括但不限于机器学习的模型训练、物理仿真中的参数调优、以及图形学中的形状优化。最佳实践建议:
- 理解目标函数特性:对于非光滑或非凸函数,利用其非光滑优化支持。
- 调参艺术:虽然LBFGS-Lite追求最小配置,特定环境下微调参数可以优化性能。
- 监控迭代过程:适时检查迭代状态,确保优化过程按预期进行。
典型生态项目
LBFGS-Lite 因其简洁的集成方式和广泛的应用范围,被众多科研和工业项目采纳。在机器学习库、图像处理软件、以及仿真模拟等领域,它作为高效优化组件贡献力量。尽管直接关联的典型生态项目具体实例未直接提及,但任何寻求轻量级无约束优化解决方案的C++项目都可能受益于LBFGS-Lite。开发者社区中不乏将之融入自定义框架的成功案例,特别是那些重视性能和简便部署的项目。
以上就是针对LBFGS-Lite开源项目的基本使用教程和概览,希望能帮助您快速上手并有效利用这一优化神器。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00