LPE 的安装和配置教程
2025-05-24 06:22:09作者:尤峻淳Whitney
1. 项目基础介绍和主要编程语言
LPE(Semantic Guided Latent Parts Embedding for Few-Shot Learning)是一个针对少量样本学习的项目,旨在通过语义引导的潜在部分嵌入来提升模型的泛化能力。该项目是WACV 2023论文的代码实现,由Fengyuan Yang, Ruiping Wang, Xilin Chen等人共同开发。主要编程语言为Python。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术和框架:
- PyTorch:一个流行的开源机器学习库,基于Torch,用于应用如深度学习在内的各种算法。
- 语义嵌入:利用预训练的语义嵌入来提升模型在少量样本上的表现。
- 潜在部分嵌入:一种用于少量样本学习的方法,通过潜在空间中的部分嵌入来提升模型的泛化能力。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下软件:
- Python 3.7
- PyTorch 1.9.0
您还需要准备以下数据集:
- miniImagenet
- tieredImageNet
- CIFAR-FS
- CUB-FS
以及对应的语义嵌入文件。
安装步骤
-
克隆项目仓库
打开终端(或命令提示符),使用以下命令克隆项目仓库:
git clone https://github.com/MartaYang/LPE.git cd LPE -
安装依赖
在项目目录中,运行以下命令安装项目所需的依赖:
pip install -r requirements.txt -
准备数据集
下载所需的数据集,并将其解压到指定文件夹(例如
/data/FSLDatasets/LPE_dataset),然后在项目配置中设置args.data_dir指向该文件夹。对于语义嵌入文件,下载后将其放置在对应数据集的文件夹中,例如
miniimagenet/wnid2CLIPemb_zscore.npy放到/data/FSLDatasets/LPE_dataset/miniimagenet/,并设置args.semantic_path和args.sem_dim。 -
运行训练和测试脚本
项目中的训练和测试脚本位于
scripts/train.sh。可以通过以下命令运行:bash scripts/train.sh运行结果将会输出到相应的日志文件中。
以上步骤即为LPE项目的详细安装和配置指南。按照这些步骤操作,您应该能够成功安装并运行该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896